ChatGPT解决这个技术问题 Extra ChatGPT

Way to get number of digits in an int?

Is there a neater way for getting the number of digits in an int than this method?

int numDigits = String.valueOf(1000).length();
define length of an int please.
I think he wants to count the digits in the number.
The answers that people are giving you are correct...they give you the length of you int without converting it to a string...but why don't you want to convert it to a string? Is it a speed thing? If so, I'm not convinced that these methods will be any faster...you might want to do some tests (or decide if it even matters.)
@ptomli hexadecimal digits are still digits, just in a different base system.
@Ptomli Sure, but both in the Integer.toString function, and in general conversation, decimal is the default. When the bank tells me, "Write the amount of your check in this box", I don't ask them whether I should write it in decimal, hex, or octal. We assume decimal unless otherwise specified or called for by context.

M
Michael Borgwardt

Your String-based solution is perfectly OK, there is nothing "un-neat" about it. You have to realize that mathematically, numbers don't have a length, nor do they have digits. Length and digits are both properties of a physical representation of a number in a specific base, i.e. a String.

A logarithm-based solution does (some of) the same things the String-based one does internally, and probably does so (insignificantly) faster because it only produces the length and ignores the digits. But I wouldn't actually consider it clearer in intent - and that's the most important factor.


+1 for consider intent of the code when picking a way to solve a problem
Datapoint: On my machine, the log method seems to run just under twice as fast as the string length methods. I wouldn't call that insignificant if the method gets called a lot or in a time-critical section of code.
See my benchmark unit test below(wich may be flawed too i am no benchmark expert). Over a large number of runs (100 000 000), the speed is 11s to 8s on my machine hardly twice as fast.
@CPerkins. Premature optimization. You know the spiel.
Some (pretty late) addition: It might not work properly for negative values, depending if you expect the "-" to be a digit or not. Adding Math.abs() will fix this, though.
D
Dmitry Brant

The logarithm is your friend:

int n = 1000;
int length = (int)(Math.log10(n)+1);

NB: only valid for n > 0.


And is this faster or better than using my variant?
+1 You beat me by a second, and your answer was right, where mine was slightly off. Note, though, that the compiler will complain due to a missing cast to int
@Tom Why would you assume it's expensive? One might assume that the math co-processor would execute it, so it might be close to the speed of an addition. Even if java doesn't use the co-processor now, it's a good assumption that it might... (We'll just ignore your even more uneducated implication that Java is slow because you probably aren't interested in evidence--or if you were you'd go to shootout.alioth.debian.org and find out for yourself)
Works... unless the value you are checking = 0, which will give you odd results (-2147483647). Math.log10 API: "If the argument is positive zero or negative zero, then the result is negative infinity."
+1 Presenting a method that doesn't involve object memory allocations, which is a must for maximizing reuse to avoid GC collections.
i
informatik01

The fastest approach: divide and conquer.

Assuming your range is 0 to MAX_INT, then you have 1 to 10 digits. You can approach this interval using divide and conquer, with up to 4 comparisons per each input. First, you divide [1..10] into [1..5] and [6..10] with one comparison, and then each length 5 interval you divide using one comparison into one length 3 and one length 2 interval. The length 2 interval requires one more comparison (total 3 comparisons), the length 3 interval can be divided into length 1 interval (solution) and a length 2 interval. So, you need 3 or 4 comparisons.

No divisions, no floating point operations, no expensive logarithms, only integer comparisons.

Code (long but fast):

if (n < 100000) {
    // 5 or less
    if (n < 100){
        // 1 or 2
        if (n < 10)
            return 1;
        else
            return 2;
    } else {
        // 3 or 4 or 5
        if (n < 1000)
            return 3;
        else {
            // 4 or 5
            if (n < 10000)
                return 4;
            else
                return 5;
        }
    }
} else {
    // 6 or more
    if (n < 10000000) {
        // 6 or 7
        if (n < 1000000)
            return 6;
        else
            return 7;
    } else {
        // 8 to 10
        if (n < 100000000)
            return 8;
        else {
            // 9 or 10
            if (n < 1000000000)
                return 9;
            else
                return 10;
        }
    }
}

Benchmark (after JVM warm-up) - see code below to see how the benchmark was run:

baseline method (with String.length): 2145ms log10 method: 711ms = 3.02 times as fast as baseline repeated divide: 2797ms = 0.77 times as fast as baseline divide-and-conquer: 74ms = 28.99 times as fast as baseline

Full code:

public static void main(String[] args) throws Exception {
    
    // validate methods:
    for (int i = 0; i < 1000; i++)
        if (method1(i) != method2(i))
            System.out.println(i);
    for (int i = 0; i < 1000; i++)
        if (method1(i) != method3(i))
            System.out.println(i + " " + method1(i) + " " + method3(i));
    for (int i = 333; i < 2000000000; i += 1000)
        if (method1(i) != method3(i))
            System.out.println(i + " " + method1(i) + " " + method3(i));
    for (int i = 0; i < 1000; i++)
        if (method1(i) != method4(i))
            System.out.println(i + " " + method1(i) + " " + method4(i));
    for (int i = 333; i < 2000000000; i += 1000)
        if (method1(i) != method4(i))
            System.out.println(i + " " + method1(i) + " " + method4(i));
    
    // work-up the JVM - make sure everything will be run in hot-spot mode
    allMethod1();
    allMethod2();
    allMethod3();
    allMethod4();
    
    // run benchmark
    Chronometer c;
    
    c = new Chronometer(true);
    allMethod1();
    c.stop();
    long baseline = c.getValue();
    System.out.println(c);
    
    c = new Chronometer(true);
    allMethod2();
    c.stop();
    System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
    
    c = new Chronometer(true);
    allMethod3();
    c.stop();
    System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
    
    c = new Chronometer(true);
    allMethod4();
    c.stop();
    System.out.println(c + " = " + StringTools.formatDouble((double)baseline / c.getValue() , "0.00") + " times as fast as baseline");
}


private static int method1(int n) {
    return Integer.toString(n).length();
}

private static int method2(int n) {
    if (n == 0)
        return 1;
    return (int)(Math.log10(n) + 1);
}

private static int method3(int n) {
    if (n == 0)
        return 1;
    int l;
    for (l = 0 ; n > 0 ;++l)
        n /= 10;
    return l;
}

private static int method4(int n) {
    if (n < 100000) {
        // 5 or less
        if (n < 100) {
            // 1 or 2
            if (n < 10)
                return 1;
            else
                return 2;
        } else {
            // 3 or 4 or 5
            if (n < 1000)
                return 3;
            else {
                // 4 or 5
                if (n < 10000)
                    return 4;
                else
                    return 5;
            }
        }
    } else {
        // 6 or more
        if (n < 10000000) {
            // 6 or 7
            if (n < 1000000)
                return 6;
            else
                return 7;
        } else {
            // 8 to 10
            if (n < 100000000)
                return 8;
            else {
                // 9 or 10
                if (n < 1000000000)
                    return 9;
                else
                    return 10;
            }
        }
    }
}


private static int allMethod1() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method1(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method1(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method1(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method1(i);
    
    return x;
}

private static int allMethod2() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method2(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method2(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method2(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method2(i);
    
    return x;
}

private static int allMethod3() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method3(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method3(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method3(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method3(i);
    
    return x;
}

private static int allMethod4() {
    int x = 0;
    for (int i = 0; i < 1000; i++)
        x = method4(i);
    for (int i = 1000; i < 100000; i += 10)
        x = method4(i);
    for (int i = 100000; i < 1000000; i += 100)
        x = method4(i);
    for (int i = 1000000; i < 2000000000; i += 200)
        x = method4(i);
    
    return x;
}

Again, benchmark:

baseline method (with String.length): 2145ms log10 method: 711ms = 3.02 times as fast as baseline repeated divide: 2797ms = 0.77 times as fast as baseline divide-and-conquer: 74ms = 28.99 times as fast as baseline

Edit

After I wrote the benchmark, I took a sneak peak into Integer.toString from Java 6, and I found that it uses:

final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
                                  99999999, 999999999, Integer.MAX_VALUE };

// Requires positive x
static int stringSize(int x) {
    for (int i=0; ; i++)
        if (x <= sizeTable[i])
            return i+1;
}

I benchmarked it against my divide-and-conquer solution:

divide-and-conquer: 104ms Java 6 solution - iterate and compare: 406ms

Mine is about 4x as fast as the Java 6 solution.


this looks great. you could write it a little more compact using the ?: operator to get more acceptance
talk about premature optimization :D
I like it! How about a switch block instead of so nested if-elseses?
I didn't realise all these if else statements would be SO much faster than converting the int to String then calling .length. +1
Using the ternary operator, brings it down to 101 characters: n<100000?n<100?n<10?1:2:n<1000?3:n<10000?4:5:n<10000000?n<1000000?6:7:n<100000000?8:n<1000000000?9:10
F
Flare Cat

Two comments on your benchmark: Java is a complex environment, what with just-in-time compiling and garbage collection and so forth, so to get a fair comparison, whenever I run a benchmark, I always: (a) enclose the two tests in a loop that runs them in sequence 5 or 10 times. Quite often the runtime on the second pass through the loop is quite different from the first. And (b) After each "approach", I do a System.gc() to try to trigger a garbage collection. Otherwise, the first approach might generate a bunch of objects, but not quite enough to force a garbage collection, then the second approach creates a few objects, the heap is exhausted, and garbage collection runs. Then the second approach is "charged" for picking up the garbage left by the first approach. Very unfair!

That said, neither of the above made a significant difference in this example.

With or without those modifications, I got very different results than you did. When I ran this, yes, the toString approach gave run times of 6400 to 6600 millis, while the log approach topok 20,000 to 20,400 millis. Instead of being slightly faster, the log approach was 3 times slower for me.

Note that the two approaches involve very different costs, so this isn't totally shocking: The toString approach will create a lot of temporary objects that have to be cleaned up, while the log approach takes more intense computation. So maybe the difference is that on a machine with less memory, toString requires more garbage collection rounds, while on a machine with a slower processor, the extra computation of log would be more painful.

I also tried a third approach. I wrote this little function:

static int numlength(int n)
{
    if (n == 0) return 1;
    int l;
    n=Math.abs(n);
    for (l=0;n>0;++l)
        n/=10;
    return l;           
}

That ran in 1600 to 1900 millis -- less than 1/3 of the toString approach, and 1/10 the log approach on my machine.

If you had a broad range of numbers, you could speed it up further by starting out dividing by 1,000 or 1,000,000 to reduce the number of times through the loop. I haven't played with that.


Have you tried varying the input? The hotspot VM could optimise this graph otherwise, resulting in wrong benchmarks, because it is returning the same precomputed thing every time.
Note that Math.abs() doesn't work for Integer.MIN_VALUE, and the method will return 0 in that case.
C
Community

Can't leave a comment yet, so I'll post as a separate answer.

The logarithm-based solution doesn't calculate the correct number of digits for very big long integers, for example:

long n = 99999999999999999L;

// correct answer: 17
int numberOfDigits = String.valueOf(n).length();

// incorrect answer: 18
int wrongNumberOfDigits = (int) (Math.log10(n) + 1); 

Logarithm-based solution calculates incorrect number of digits in large integers


try (int) (Math.log10(n+j)) instead where j is 10 - (n - n/10*10).
S
Santosh

Using Java

int nDigits = Math.floor(Math.log10(Math.abs(the_integer))) + 1;

use import java.lang.Math.*; in the beginning

Using C

int nDigits = floor(log10(abs(the_integer))) + 1;

use inclue math.h in the beginning


Just FYI, will result in infinity if the_integer is 0, so check for that.
Note that Math.abs() doesn't work for Integer.MIN_VALUE.
Why floor? I believe is not necessary, could you please explain it?, even with the +1 which is required to get the actual digit count I think the floor is unnecessary.
D
Dirk

Since the number of digits in base 10 of an integer is just 1 + truncate(log10(number)), you can do:

public class Test {

    public static void main(String[] args) {

        final int number = 1234;
        final int digits = 1 + (int)Math.floor(Math.log10(number));

        System.out.println(digits);
    }
}

Edited because my last edit fixed the code example, but not the description.


Cool. but I think it needs abs(number) and also "0" is special case too?
Yes. If you need to account for the sign, you will have to do something like 1 + (int)Math.floor(Math.log10(Math.abs(number))) + ((number < 0)? 1 : 0)
The Math.floor is a bit redundant, isn't it? Casting to int will round it down anyway.
@DmitryK @Dirk: Note that Math.abs() doesn't work for Integer.MIN_VALUE.
T
ThisClark

Another string approach. Short and sweet - for any integer n.

int length = ("" + n).length();

Only works for positive integer n and zero. Can use ("" + Math.abs(n)).length() to get length of negative integer.
Note that Math.abs() doesn't work for Integer.MIN_VALUE.
("" + n).replace("-", "").length(); // prevent negatives with replace
J
J.A.I.L.

Marian's solution adapted for long type numbers (up to 9,223,372,036,854,775,807), in case someone want's to Copy&Paste it. In the program I wrote this for numbers up to 10000 were much more probable, so I made a specific branch for them. Anyway it won't make a significative difference.

public static int numberOfDigits (long n) {     
    // Guessing 4 digit numbers will be more probable.
    // They are set in the first branch.
    if (n < 10000L) { // from 1 to 4
        if (n < 100L) { // 1 or 2
            if (n < 10L) {
                return 1;
            } else {
                return 2;
            }
        } else { // 3 or 4
            if (n < 1000L) {
                return 3;
            } else {
                return 4;
            }
        }           
    } else  { // from 5 a 20 (albeit longs can't have more than 18 or 19)
        if (n < 1000000000000L) { // from 5 to 12
            if (n < 100000000L) { // from 5 to 8
                if (n < 1000000L) { // 5 or 6
                    if (n < 100000L) {
                        return 5;
                    } else {
                        return 6;
                    }
                } else { // 7 u 8
                    if (n < 10000000L) {
                        return 7;
                    } else {
                        return 8;
                    }
                }
            } else { // from 9 to 12
                if (n < 10000000000L) { // 9 or 10
                    if (n < 1000000000L) {
                        return 9;
                    } else {
                        return 10;
                    }
                } else { // 11 or 12
                    if (n < 100000000000L) {
                        return 11;
                    } else {
                        return 12;
                    }
                }
            }
        } else { // from 13 to ... (18 or 20)
            if (n < 10000000000000000L) { // from 13 to 16
                if (n < 100000000000000L) { // 13 or 14
                    if (n < 10000000000000L) { 
                        return 13;
                    } else {
                        return 14;
                    }
                } else { // 15 or 16
                    if (n < 1000000000000000L) {
                        return 15;
                    } else {
                        return 16;
                    }
                }
            } else { // from 17 to ...¿20?
                if (n < 1000000000000000000L) { // 17 or 18
                    if (n < 100000000000000000L) {
                        return 17;
                    } else {
                        return 18;
                    }
                } else { // 19? Can it be?
                    // 10000000000000000000L is'nt a valid long.
                    return 19;
                }
            }
        }
    }
}

Should this question's title be changed to "Way to get number of digits in an int/long?" (and added the 'long' tag)
S
Sinista

How about plain old Mathematics? Divide by 10 until you reach 0.

public static int getSize(long number) {
        int count = 0;
        while (number > 0) {
            count += 1;
            number = (number / 10);
        }
        return count;
    }

Have you tested it? You know that, even tough it makes sense for a human viewpoint, it doesn't really work the same with the machine's "way-of-thinking", right? --- Let me propose one thing: Make an array of two million numbers, preferably Long.MAX_VALUE, which is your code's worst complexity case, and use System.nanoTime() to do a clocking trial against the other solution's worst complexity cases. ++Actually, try it with an array filled by a randomizer set to the range of 0 to Long.MAX_VALUEtoo, just for the "average complexity" testing++ You might find the results...very shocking.
@thelima This doesn't work correctly for zero or negatives, but that's a minor bug. The principle looks correct to me. What "shocking" result are you referring to?
Let's just say that computers...Well...They don't like dividing. And in cases where large "queues" of large numbers need to be processed, and each digit in each processed number will require a division...Well...Things "start getting really slow really fast"...If you catch my meaning... --- This is why you see many of the answers here using codes based on test and comparison with each decimal digit using 'if's, rather than divisions: If its not faster, at least it maintains most of it's speed regardless of it's worst-cases. --- Do a test between using divisions and logarithm on large numbers...
@TheLima what are you talking about? For an int, this loop executes a maximum of 11 times. Do you have some evidence for your assertions?
@EJP From a hardware viewpoint, division is an iterative process. The fastest division algorithm I know of is radix4, which generates 4 bits per iteration; so a 32 bit divide needs 8 iterations at least. Multiplications, for example, can be done in parallel, and also be broken down into simpler multiplications; either down to bit level (requiring only 5 operations), or with partial break down plus a look-up table at the end (Classic size VS speed trade-off). It's not just about "how many iterations"; the problem with divisions lies with "what each iteration implies/does, at a hardware level"
S
Sameer Khanal

I see people using String libraries or even using the Integer class. Nothing wrong with that but the algorithm for getting the number of digits is not that complicated. I am using a long in this example but it works just as fine with an int.

 private static int getLength(long num) {

    int count = 1;

    while (num >= 10) {
        num = num / 10;
        count++;
    }

    return count;
}

D
DmitryK

Can I try? ;)

based on Dirk's solution

final int digits = number==0?1:(1 + (int)Math.floor(Math.log10(Math.abs(number))));

Note that Math.abs() doesn't work for Integer.MIN_VALUE.
U
UserNotFound

Marian's Solution, now with Ternary:

 public int len(int n){
        return (n<100000)?((n<100)?((n<10)?1:2):(n<1000)?3:((n<10000)?4:5)):((n<10000000)?((n<1000000)?6:7):((n<100000000)?8:((n<1000000000)?9:10)));
    }

Because we can.


That's kinda hard to read. Maybe add some spaces and/or newlines.
But damn is it portable!
S
Sahil

no String API, no utils, no type conversion, just pure java iteration ->

public static int getNumberOfDigits(int input) {
    int numOfDigits = 1;
    int base = 1;
    while (input >= base * 10) {
        base = base * 10;
        numOfDigits++;
    }
    return numOfDigits;
 }

You can go long for bigger values if you please.


This will loop indefinitely for all values larger than 1874919423. To see why, try the following: for (int x = 1, i = 0; i < 32; ++i) { System.out.println(x *= 10); }
J
Jean

Curious, I tried to benchmark it ...

import org.junit.Test;
import static org.junit.Assert.*;


public class TestStack1306727 {

    @Test
    public void bench(){
        int number=1000;
        int a= String.valueOf(number).length();
        int b= 1 + (int)Math.floor(Math.log10(number));

        assertEquals(a,b);
        int i=0;
        int s=0;
        long startTime = System.currentTimeMillis();
        for(i=0, s=0; i< 100000000; i++){
            a= String.valueOf(number).length();
            s+=a;
        }
        long stopTime = System.currentTimeMillis();
        long runTime = stopTime - startTime;
        System.out.println("Run time 1: " + runTime);
        System.out.println("s: "+s);
        startTime = System.currentTimeMillis();
        for(i=0,s=0; i< 100000000; i++){
            b= number==0?1:(1 + (int)Math.floor(Math.log10(Math.abs(number))));
            s+=b;
        }
        stopTime = System.currentTimeMillis();
        runTime = stopTime - startTime;
        System.out.println("Run time 2: " + runTime);
        System.out.println("s: "+s);
        assertEquals(a,b);


    }
}

the results are :

Run time 1: 6765
s: 400000000
Run time 2: 6000
s: 400000000

Now I am left to wonder if my benchmark actually means something but I do get consistent results (variations within a ms) over multiple runs of the benchmark itself ... :) It looks like it's useless to try and optimize this...

edit: following ptomli's comment, I replaced 'number' by 'i' in the code above and got the following results over 5 runs of the bench :

Run time 1: 11500
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11485
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11469
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11500
s: 788888890
Run time 2: 8547
s: 788888890

Run time 1: 11484
s: 788888890
Run time 2: 8547
s: 788888890

Just for the fun of it, what's the difference across a distribution of values of number, from say 0 to a trillion? :)
T
Teepeemm

With design (based on problem). This is an alternate of divide-and-conquer. We'll first define an enum (considering it's only for an unsigned int).

public enum IntegerLength {
    One((byte)1,10),
    Two((byte)2,100),
    Three((byte)3,1000),
    Four((byte)4,10000),
    Five((byte)5,100000),
    Six((byte)6,1000000),
    Seven((byte)7,10000000),
    Eight((byte)8,100000000),
    Nine((byte)9,1000000000);

    byte length;
    int value;

    IntegerLength(byte len,int value) {
        this.length = len;
        this.value = value;
    }

    public byte getLenght() {
        return length;
    }

    public int getValue() {
        return value;
    }
}

Now we'll define a class that goes through the values of the enum and compare and return the appropriate length.

public class IntegerLenght {
    public static byte calculateIntLenght(int num) {    
        for(IntegerLength v : IntegerLength.values()) {
            if(num < v.getValue()){
                return v.getLenght();
            }
        }
        return 0;
    }
}

The run time of this solution is the same as the divide-and-conquer approach.


A divide-and-conquer would start at the middle and bisect the remaining search area. This has a linear run time. But it won't matter for only 9 comparisons. But won't this mess up if num>=Nine.getValue()?
J
Jedi Dula

What about this recursive method?

    private static int length = 0;

    public static int length(int n) {
    length++;
    if((n / 10) < 10) {
        length++;
    } else {
        length(n / 10);
    }
    return length;
}

S
ShoeMaker

simple solution:

public class long_length {
    long x,l=1,n;
    for (n=10;n<x;n*=10){
        if (x/n!=0){
            l++;
        }
    }
    System.out.print(l);
}

V
VoidCatz

A really simple solution:

public int numLength(int n) {
  for (int length = 1; n % Math.pow(10, length) != n; length++) {}
  return length;
}

I wouldn't call a one line for loop with an empty body simple. Nor modulo a power of 10 to see if you get the same thing back (can't you just use a comparison?).
S
Szabi Zsoldos

Or instead the length you can check if the number is larger or smaller then the desired number.

    public void createCard(int cardNumber, int cardStatus, int customerId) throws SQLException {
    if(cardDao.checkIfCardExists(cardNumber) == false) {
        if(cardDao.createCard(cardNumber, cardStatus, customerId) == true) {
            System.out.println("Card created successfully");
        } else {

        }
    } else {
        System.out.println("Card already exists, try with another Card Number");
        do {
            System.out.println("Enter your new Card Number: ");
            scan = new Scanner(System.in);
            int inputCardNumber = scan.nextInt();
            cardNumber = inputCardNumber;
        } while(cardNumber < 95000000);
        cardDao.createCard(cardNumber, cardStatus, customerId);
    }
}

}


I don't understand. It seems like you're answering a different question.
J
Jonathan Smith

I haven't seen a multiplication-based solution yet. Logarithm, divison, and string-based solutions will become rather unwieldy against millions of test cases, so here's one for ints:

/**
 * Returns the number of digits needed to represents an {@code int} value in 
 * the given radix, disregarding any sign.
 */
public static int len(int n, int radix) {
    radixCheck(radix); 
    // if you want to establish some limitation other than radix > 2
    n = Math.abs(n);

    int len = 1;
    long min = radix - 1;

    while (n > min) {
        n -= min;
        min *= radix;
        len++;
    }

    return len;
}

In base 10, this works because n is essentially being compared to 9, 99, 999... as min is 9, 90, 900... and n is being subtracted by 9, 90, 900...

Unfortunately, this is not portable to long just by replacing every instance of int due to overflow. On the other hand, it just so happens it will work for bases 2 and 10 (but badly fails for most of the other bases). You'll need a lookup table for the overflow points (or a division test... ew)

/**
 * For radices 2 &le r &le Character.MAX_VALUE (36)
 */
private static long[] overflowpt = {-1, -1, 4611686018427387904L,
    8105110306037952534L, 3458764513820540928L, 5960464477539062500L,
    3948651115268014080L, 3351275184499704042L, 8070450532247928832L,
    1200757082375992968L, 9000000000000000000L, 5054470284992937710L,
    2033726847845400576L, 7984999310198158092L, 2022385242251558912L,
    6130514465332031250L, 1080863910568919040L, 2694045224950414864L,
    6371827248895377408L, 756953702320627062L, 1556480000000000000L,
    3089447554782389220L, 5939011215544737792L, 482121737504447062L,
    839967991029301248L, 1430511474609375000L, 2385723916542054400L,
    3902460517721977146L, 6269893157408735232L, 341614273439763212L,
    513726300000000000L, 762254306892144930L, 1116892707587883008L,
    1617347408439258144L, 2316231840055068672L, 3282671350683593750L,
    4606759634479349760L};

public static int len(long n, int radix) {
    radixCheck(radix);
    n = abs(n);

    int len = 1;
    long min = radix - 1;
    while (n > min) {
        len++;
        if (min == overflowpt[radix]) break;
        n -= min;
        min *= radix;

    }

    return len;
}

h
howToDeleteMyAccount

One wants to do this mostly because he/she wants to "present" it, which mostly mean it finally needs to be "toString-ed" (or transformed in another way) explicitly or implicitly anyway; before it can be presented (printed for example).

If that is the case then just try to make the necessary "toString" explicit and count the bits.


e
ericdemo07

We can achieve this using a recursive loop

    public static int digitCount(int numberInput, int i) {
        while (numberInput > 0) {
        i++;
        numberInput = numberInput / 10;
        digitCount(numberInput, i);
        }
        return i;
    }

    public static void printString() {
        int numberInput = 1234567;
        int digitCount = digitCount(numberInput, 0);

        System.out.println("Count of digit in ["+numberInput+"] is ["+digitCount+"]");
    }

d
duyuanchao

I wrote this function after looking Integer.java source code.

private static int stringSize(int x) {
    final int[] sizeTable = {9, 99, 999, 9_999, 99_999, 999_999, 9_999_999,
            99_999_999, 999_999_999, Integer.MAX_VALUE};
    for (int i = 0; ; ++i) {
        if (x <= sizeTable[i]) {
            return i + 1;
        }
    }
}

G
GURU Shreyansh

One of the efficient ways to count the number of digits in an int variable would be to define a method digitsCounter with a required number of conditional statements.
The approach is simple, we will be checking for each range in which a n digit number can lie:
0 : 9 are Single digit numbers
10 : 99 are Double digit numbers
100 : 999 are Triple digit numbers and so on...

    static int digitsCounter(int N)
    {   // N = Math.abs(N); // if `N` is -ve
        if (0 <= N && N <= 9) return 1;
        if (10 <= N && N <= 99) return 2;
        if (100 <= N && N <= 999) return 3;
        if (1000 <= N && N <= 9999) return 4;
        if (10000 <= N && N <= 99999) return 5;
        if (100000 <= N && N <= 999999) return 6;
        if (1000000 <= N && N <= 9999999) return 7;
        if (10000000 <= N && N <= 99999999) return 8;
        if (100000000 <= N && N <= 999999999) return 9;
        return 10;
    }

A cleaner way to do this is to remove the check for the lower limits as it won't be required if we proceed in a sequential manner.

    static int digitsCounter(int N)
    {
        N = N < 0 ? -N : N;
        if (N <= 9) return 1;
        if (N <= 99) return 2;
        if (N <= 999) return 3;
        if (N <= 9999) return 4;
        if (N <= 99999) return 5;
        if (N <= 999999) return 6;
        if (N <= 9999999) return 7;
        if (N <= 99999999) return 8;
        if (N <= 999999999) return 9;
        return 10; // Max possible digits in an 'int'
    }

A
Amimo Benja

Ideally, an integer divided by 10 multiple times will return the number of digits as long as the integer is not zero. As such a simple method to do so can be created as below.

public static int getNumberOfDigits(int number) {
    int numberOfDigits = 0;                
    while(number != 0) {
        number /= 10;
        numberOfDigits++;
    }
    
    return numberOfDigits;
}

T
Teepeemm

Here's a really simple method I made that works for any number:

public static int numberLength(int userNumber) {

    int numberCounter = 10;
    boolean condition = true;
    int digitLength = 1;

    while (condition) {
        int numberRatio = userNumber / numberCounter;
        if (numberRatio < 1) {
            condition = false;
        } else {
            digitLength++;
            numberCounter *= 10;
        }
    }

    return digitLength; 
}

The way it works is with the number counter variable is that 10 = 1 digit space. For example .1 = 1 tenth => 1 digit space. Therefore if you have int number = 103342; you'll get 6, because that's the equivalent of .000001 spaces back. Also, does anyone have a better variable name for numberCounter? I can't think of anything better.

Edit: Just thought of a better explanation. Essentially what this while loop is doing is making it so you divide your number by 10, until it's less than one. Essentially, when you divide something by 10 you're moving it back one number space, so you simply divide it by 10 until you reach <1 for the amount of digits in your number.

Here's another version that can count the amount of numbers in a decimal:

public static int repeatingLength(double decimalNumber) {

    int numberCounter = 1;
    boolean condition = true;
    int digitLength = 1;

    while (condition) {
        double numberRatio = decimalNumber * numberCounter;

        if ((numberRatio - Math.round(numberRatio)) < 0.0000001) {
            condition = false;
        } else {
            digitLength++;
            numberCounter *= 10;
        }
    }
    return digitLength - 1;
}