ChatGPT解决这个技术问题 Extra ChatGPT

How to round to at most 2 decimal places, if necessary

I'd like to round at most two decimal places, but only if necessary.

Input:

10
1.7777777
9.1

Output:

10
1.78
9.1

How can I do this in JavaScript?

You can't. See my answer in this question for why not, with proof.
@user207421 Your link is to this question but if "this question" means this question, you don't have an answer on this question. PS Googling ... I suppose you maybe meant stackoverflow.com/questions/153724/…

u
user229044

Use Math.round() :

Math.round(num * 100) / 100

Or to be more specific and to ensure things like 1.005 round correctly, use Number.EPSILON :

Math.round((num + Number.EPSILON) * 100) / 100

@PSatishPatro (I assume you meant to say 224.99 and not 224.95). if you're rounding to the 2nd decimal (hundredths) then we should only care about what number the 3rd (thousandth) decimal is and everything after that is dropped. So from the input 224.98499999, only 224.984 matters which means 224.98 is correct.
Math.round(1.255 * 100) / 100 will be 1.25 . it's wrong
@PSatishPatro we're off-topic, I realise, but rounding 224.9849... to two decimal places should, in any language or by hand, result in 224.98. If you get 224.99 I'm afraid you did it wrong. The simplest way to think of it is that you're looking for the nearest number with only two decimal places. While there isn't much difference, 224.9849 is closer to 224.98 than to 224.99.
I find that it rounds wrong for 10.075. Gives 10.07 rather than 10.08, even with the epsilon fix.
Math.round((519.805+ Number.EPSILON) * 100) / 100, it rounds to 519.8
P
Peter Mortensen

If the value is a text type:

parseFloat("123.456").toFixed(2);

If the value is a number:

var numb = 123.23454;
numb = numb.toFixed(2);

There is a downside that values like 1.5 will give "1.50" as the output. A fix suggested by @minitech:

var numb = 1.5;
numb = +numb.toFixed(2);
// Note the plus sign that drops any "extra" zeroes at the end.
// It changes the result (which is a string) into a number again (think "0 + foo"),
// which means that it uses only as many digits as necessary.

It seems like Math.round is a better solution. But it is not! In some cases it will not round correctly:

Math.round(1.005 * 100)/100 // Returns 1 instead of expected 1.01!

toFixed() will also not round correctly in some cases (tested in Chrome v.55.0.2883.87)!

Examples:

parseFloat("1.555").toFixed(2); // Returns 1.55 instead of 1.56.
parseFloat("1.5550").toFixed(2); // Returns 1.55 instead of 1.56.
// However, it will return correct result if you round 1.5551.
parseFloat("1.5551").toFixed(2); // Returns 1.56 as expected.

1.3555.toFixed(3) // Returns 1.355 instead of expected 1.356.
// However, it will return correct result if you round 1.35551.
1.35551.toFixed(2); // Returns 1.36 as expected.

I guess, this is because 1.555 is actually something like float 1.55499994 behind the scenes.

Solution 1 is to use a script with required rounding algorithm, for example:

function roundNumber(num, scale) {
  if(!("" + num).includes("e")) {
    return +(Math.round(num + "e+" + scale)  + "e-" + scale);
  } else {
    var arr = ("" + num).split("e");
    var sig = ""
    if(+arr[1] + scale > 0) {
      sig = "+";
    }
    return +(Math.round(+arr[0] + "e" + sig + (+arr[1] + scale)) + "e-" + scale);
  }
}

It is also at Plunker.

Note: This is not a universal solution for everyone. There are several different rounding algorithms. Your implementation can be different, and it depends on your requirements. See also Rounding.

Solution 2 is to avoid front end calculations and pull rounded values from the backend server.

Another possible solution, which is not a bulletproof either.

Math.round((num + Number.EPSILON) * 100) / 100

In some cases, when you round a number like 1.3549999999999998, it will return an incorrect result. It should be 1.35, but the result is 1.36.


in this function roundNumberV2 there is this condition if (Math.pow(0.1, scale) > num) { return 0; }. may I know what is the purpose of this condition ?
Performance should be a concern also, which could make this approach less desirable. Math.round() is much faster. jsbin.com/kikocecemu/edit?js,output
Note, as a heads-up for someone because this bit me, but if you want to do something like var a = parseFloat(1/3).toFixed(2); it doesn't seem to like it when you do var c = a + someNumber; - it will treat it like you are trying to add a string (that new a there) to a number (someNumber). So probably would need to do var c = eval(a) + someNumber;.
Note: "Executing JavaScript from a string is an enormous security risk. It is far too easy for a bad actor to run arbitrary code when you use eval()", see MDN docs here
Instead of eval(a) you should use Number(a), parseFloat(a) (which actually behave the same stackoverflow.com/a/11988612/16940). You can even just use +a. I prefer Number(a).
P
Peter Mortensen

You can use

function roundToTwo(num) {
    return +(Math.round(num + "e+2")  + "e-2");
}

I found this on MDN. Their way avoids the problem with 1.005 that was mentioned.

roundToTwo(1.005)
1.01
roundToTwo(10)
10
roundToTwo(1.7777777)
1.78
roundToTwo(9.1)
9.1
roundToTwo(1234.5678)
1234.57

@Redsandro, +(val) is the coercion equivalent of using Number(val). Concatenating "e-2" to an number resulted in a string that needed to be converted back to a number.
Pass a number with e and it returns NaN e.g. 1.19e-7
This does not work well for negative numbers.
However, if num is -2.9e-7, then +(Math.round(num + "e+2") + "e-2") returns NaN, which is not the desired reult. At least on Chrome 101
P
Peter Mortensen

MarkG's answer is the correct one. Here's a generic extension for any number of decimal places.

Number.prototype.round = function(places) {
  return +(Math.round(this + "e+" + places)  + "e-" + places);
}

Usage:

var n = 1.7777;    
n.round(2); // 1.78

Unit test:

it.only('should round floats to 2 places', function() {
    
  var cases = [
    { n: 10,      e: 10,    p:2 },
    { n: 1.7777,  e: 1.78,  p:2 },
    { n: 1.005,   e: 1.01,  p:2 },
    { n: 1.005,   e: 1,     p:0 },
    { n: 1.77777, e: 1.8,   p:1 }
  ]
    
  cases.forEach(function(testCase) {
    var r = testCase.n.round(testCase.p);
    assert.equal(r, testCase.e, 'didn\'t get right number');
  });
})

I find this standalone (no prototype extension) version (ES6) easy to read and straight forward: round = (num, precision) => Number(Math.round(num + "e+" + precision) + "e-" + precision);
What if the input number is already in exponential form? You will get NaN
I receive this error in this (Math.round(number + "e+" + places)) Argument of type 'string' is not assignable to parameter of type 'number' In Typescript
to accomodate for very small and very large number which will be in exponential form automatically you can address that with toFixed. I.e. function round(val, decimals) { return +(Math.round(+(val.toFixed(decimals) + "e+" + decimals)) + "e-" + decimals); }
oh come on dont modify prototypes
c
cronvel

You should use:

Math.round( num * 100 + Number.EPSILON ) / 100

No one seems to be aware of Number.EPSILON.

Also it's worth noting that this is not a JavaScript weirdness like some people stated.

That is simply the way floating point numbers works in a computer. Like 99% of programming languages, JavaScript doesn't have home made floating point numbers; it relies on the CPU/FPU for that. A computer uses binary, and in binary, there isn't any numbers like 0.1, but a mere binary approximation for that. Why? For the same reason than 1/3 cannot be written in decimal: its value is 0.33333333... with an infinity of threes.

Here come Number.EPSILON. That number is the difference between 1 and the next number existing in the double precision floating point numbers. That's it: There is no number between 1 and 1 + Number.EPSILON.

EDIT:

As asked in the comments, let's clarify one thing: adding Number.EPSILON is relevant only when the value to round is the result of an arithmetic operation, as it can swallow some floating point error delta.

It's not useful when the value comes from a direct source (e.g.: literal, user input or sensor).

EDIT (2019):

Like @maganap and some peoples have pointed out, it's best to add Number.EPSILON before multiplying:

Math.round( ( num + Number.EPSILON ) * 100 ) / 100

EDIT (december 2019):

Lately, I use a function similar to this one for comparing numbers epsilon-aware:

const ESPILON_RATE = 1 + Number.EPSILON ;
const ESPILON_ZERO = Number.MIN_VALUE ;

function epsilonEquals( a , b ) {
  if ( Number.isNaN( a ) || Number.isNaN( b ) ) {
    return false ;
  }
  if ( a === 0 || b === 0 ) {
    return a <= b + EPSILON_ZERO && b <= a + EPSILON_ZERO ;
  }
  return a <= b * EPSILON_RATE && b <= a * EPSILON_RATE ;
}

My use-case is an assertion + data validation lib I'm developing for many years.

In fact, in the code I'm using ESPILON_RATE = 1 + 4 * Number.EPSILON and EPSILON_ZERO = 4 * Number.MIN_VALUE (four times the epsilon), because I want an equality checker loose enough for cumulating floating point error.

So far, it looks perfect for me. I hope it will help.


Should I use 1000 instead of 100 if I want to round to 3 decimal numbers?
Math.round((224.98499999 * 100 + Number.EPSILON)) / 100 224.98 Instead of 224.99
@PSatishPatro That is correct. .849 is closer to .8 than it is to .9, thus, it's rounded down to .8.
@RandomElephant, okay, but generally when we calculate we do rounding up which is rounding HALF UP from the last digit. 98499 -> .9849 -> .985 -> .99 .Is there any way to achieve this in js?
@PSatishPatro There is, but it's incorrect math. There's no general rounding up where you start from the last digit, and if you do, you seriously need to consider re-learning maths. Edit: To answer, you'd take the length of the number digits, and looped them from the last one, rounding each one and changing the intial number until you got to the desired place count.
A
Amr Ali

In general, decimal rounding is done by scaling: round(num * p) / p

Naive implementation

Using the following function with halfway numbers, you will get either the upper rounded value as expected, or the lower rounded value sometimes depending on the input.

This inconsistency in rounding may introduce hard to detect bugs in the client code.

function naiveRound(num, decimalPlaces = 0) { var p = Math.pow(10, decimalPlaces); return Math.round(num * p) / p; } console.log( naiveRound(1.245, 2) ); // 1.25 correct (rounded as expected) console.log( naiveRound(1.255, 2) ); // 1.25 incorrect (should be 1.26) // testing edge cases console.log( naiveRound(1.005, 2) ); // 1 incorrect (should be 1.01) console.log( naiveRound(2.175, 2) ); // 2.17 incorrect (should be 2.18) console.log( naiveRound(5.015, 2) ); // 5.01 incorrect (should be 5.02)

In order to determine whether a rounding operation involves a midpoint value, the Round function multiplies the original value to be rounded by 10 ** n, where n is the desired number of fractional digits in the return value, and then determines whether the remaining fractional portion of the value is greater than or equal to .5. This "Exact Testing for Equality" with floating-point values are problematic because of the floating-point format's issues with binary representation and precision. This means that any fractional portion of a number that is slightly less than .5 (because of a loss of precision) will not be rounded upward.

In the previous example, 5.015 is a midpoint value if it is to be rounded to two decimal places, the value of 5.015 * 100 is actually 501.49999999999994. Because .49999999999994 is less than .5, it is rounded down to 501 and finally the result is 5.01.

Better implementations

Exponential notation

By converting the number to a string in the exponential notation, positive numbers are rounded as expected. But, be aware that negative numbers round differently than positive numbers.

In fact, it performs what is basically equivalent to "round half up" as the rule, you will see that round(-1.005, 2) evaluates to -1 even though round(1.005, 2) evaluates to 1.01. The lodash _.round method uses this technique.

/** * Round half up ('round half towards positive infinity') * Negative numbers round differently than positive numbers. */ function round(num, decimalPlaces = 0) { num = Math.round(num + "e" + decimalPlaces); return Number(num + "e" + -decimalPlaces); } // test rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // 0 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1 console.log( round(-2.175, 2) ); // -2.17 console.log( round(-5.015, 2) ); // -5.01

If you want the usual behavior when rounding negative numbers, you would need to convert negative numbers to positive before calling Math.round(), and then convert them back to negative numbers before returning.

// Round half away from zero
function round(num, decimalPlaces = 0) {
    if (num < 0)
        return -round(-num, decimalPlaces);

    num = Math.round(num + "e" + decimalPlaces);
    return Number(num + "e" + -decimalPlaces);
}

Approximate rounding

To correct the rounding problem shown in the previous naiveRound example, we can define a custom rounding function that performs a "nearly equal" test to determine whether a fractional value is sufficiently close to a midpoint value to be subject to midpoint rounding.

// round half away from zero function round(num, decimalPlaces = 0) { if (num < 0) return -round(-num, decimalPlaces); var p = Math.pow(10, decimalPlaces); var n = num * p; var f = n - Math.floor(n); var e = Number.EPSILON * n; // Determine whether this fraction is a midpoint value. return (f >= .5 - e) ? Math.ceil(n) / p : Math.floor(n) / p; } // test rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // -1 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1.01 console.log( round(-2.175, 2) ); // -2.18 console.log( round(-5.015, 2) ); // -5.02

Number.EPSILON

There is a different purely mathematical technique to perform round-to-nearest (using "round half away from zero"), in which epsilon correction is applied before calling the rounding function.

Simply, we add the smallest possible float value (= 1.0 ulp; unit in the last place) to the product before rounding. This moves to the next representable float value, away from zero, thus it will offset the binary round-off error that may occur during the multiplication by 10 ** n.

/** * Round half away from zero ('commercial' rounding) * Uses correction to offset floating-point inaccuracies. * Works symmetrically for positive and negative numbers. */ function round(num, decimalPlaces = 0) { var p = Math.pow(10, decimalPlaces); var n = (num * p) * (1 + Number.EPSILON); return Math.round(n) / p; } // rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // -1 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1.01 console.log( round(-2.175, 2) ); // -2.18 console.log( round(-5.015, 2) ); // -5.02

After adding 1 ulp, the value of 5.015 * 100 which is 501.49999999999994 will be corrected to 501.50000000000006, this will rounded up to 502 and finally the result is 5.02.

Note that the size of a unit in last place ("ulp") is determined by (1) the magnitude of the number and (2) the relative machine epsilon (2^-52). Ulps are relatively larger at numbers with bigger magnitudes than they are at numbers with smaller magnitudes.

Double rounding

Here, we use the toPrecision() method to strip the floating-point round-off errors in the intermediate calculations. Simply, we round to 15 significant figures to strip the round-off error at the 16th significant digit. This technique to preround the result to significant digits is also used by PHP 7 round function.

The value of 5.015 * 100 which is 501.49999999999994 will be rounded first to 15 significant digits as 501.500000000000, then it will rounded up again to 502 and finally the result is 5.02.

// Round half away from zero function round(num, decimalPlaces = 0) { if (num < 0) return -round(-num, decimalPlaces); var p = Math.pow(10, decimalPlaces); var n = (num * p).toPrecision(15); return Math.round(n) / p; } // rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // -1 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1.01 console.log( round(-2.175, 2) ); // -2.18 console.log( round(-5.015, 2) ); // -5.02

Arbitrary-precision JavaScript library - decimal.js

// Round half away from zero function round(num, decimalPlaces = 0) { return new Decimal(num).toDecimalPlaces(decimalPlaces).toNumber(); } // rounding of half console.log( round(0.5) ); // 1 console.log( round(-0.5) ); // -1 // testing edge cases console.log( round(1.005, 2) ); // 1.01 console.log( round(2.175, 2) ); // 2.18 console.log( round(5.015, 2) ); // 5.02 console.log( round(-1.005, 2) ); // -1.01 console.log( round(-2.175, 2) ); // -2.18 console.log( round(-5.015, 2) ); // -5.02

Solution 1: string in exponential notation

Inspired by the solution provided by KFish here: https://stackoverflow.com/a/55521592/4208440

A simple drop in solution that provides accurate decimal rounding, flooring, and ceiling to a specific number of decimal places without adding a whole library. It treats floats more like decimals by fixing the binary rounding issues to avoid unexpected results: for example, floor((0.1+0.7)*10) will return the expected result 8.

Numbers are rounded to a specific number of fractional digits. Specifying a negative precision will round to any number of places to the left of the decimal point.

// Solution 1 var DecimalPrecision = (function() { if (Math.trunc === undefined) { Math.trunc = function(v) { return v < 0 ? Math.ceil(v) : Math.floor(v); }; } var decimalAdjust = function myself(type, num, decimalPlaces) { if (type === 'round' && num < 0) return -myself(type, -num, decimalPlaces); var shift = function(value, exponent) { value = (value + 'e').split('e'); return +(value[0] + 'e' + (+value[1] + (exponent || 0))); }; var n = shift(num, +decimalPlaces); return shift(Math[type](n), -decimalPlaces); }; return { // Decimal round (half away from zero) round: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces); }, // Decimal ceil ceil: function(num, decimalPlaces) { return decimalAdjust('ceil', num, decimalPlaces); }, // Decimal floor floor: function(num, decimalPlaces) { return decimalAdjust('floor', num, decimalPlaces); }, // Decimal trunc trunc: function(num, decimalPlaces) { return decimalAdjust('trunc', num, decimalPlaces); }, // Format using fixed-point notation toFixed: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces).toFixed(decimalPlaces); } }; })(); // test rounding of half console.log(DecimalPrecision.round(0.5)); // 1 console.log(DecimalPrecision.round(-0.5)); // -1 // testing very small numbers console.log(DecimalPrecision.ceil(1e-8, 2) === 0.01); console.log(DecimalPrecision.floor(1e-8, 2) === 0); // testing simple cases console.log(DecimalPrecision.round(5.12, 1) === 5.1); console.log(DecimalPrecision.round(-5.12, 1) === -5.1); console.log(DecimalPrecision.ceil(5.12, 1) === 5.2); console.log(DecimalPrecision.ceil(-5.12, 1) === -5.1); console.log(DecimalPrecision.floor(5.12, 1) === 5.1); console.log(DecimalPrecision.floor(-5.12, 1) === -5.2); console.log(DecimalPrecision.trunc(5.12, 1) === 5.1); console.log(DecimalPrecision.trunc(-5.12, 1) === -5.1); // testing edge cases for round console.log(DecimalPrecision.round(1.005, 2) === 1.01); console.log(DecimalPrecision.round(39.425, 2) === 39.43); console.log(DecimalPrecision.round(-1.005, 2) === -1.01); console.log(DecimalPrecision.round(-39.425, 2) === -39.43); // testing edge cases for ceil console.log(DecimalPrecision.ceil(9.13, 2) === 9.13); console.log(DecimalPrecision.ceil(65.18, 2) === 65.18); console.log(DecimalPrecision.ceil(-2.26, 2) === -2.26); console.log(DecimalPrecision.ceil(-18.15, 2) === -18.15); // testing edge cases for floor console.log(DecimalPrecision.floor(2.26, 2) === 2.26); console.log(DecimalPrecision.floor(18.15, 2) === 18.15); console.log(DecimalPrecision.floor(-9.13, 2) === -9.13); console.log(DecimalPrecision.floor(-65.18, 2) === -65.18); // testing edge cases for trunc console.log(DecimalPrecision.trunc(2.26, 2) === 2.26); console.log(DecimalPrecision.trunc(18.15, 2) === 18.15); console.log(DecimalPrecision.trunc(-2.26, 2) === -2.26); console.log(DecimalPrecision.trunc(-18.15, 2) === -18.15); // testing round to tens and hundreds console.log(DecimalPrecision.round(1262.48, -1) === 1260); console.log(DecimalPrecision.round(1262.48, -2) === 1300); // testing toFixed() console.log(DecimalPrecision.toFixed(1.005, 2) === "1.01");

Solution 2: purely mathematical (Number.EPSILON)

This solution avoids any string conversion / manipulation of any kind for performance reasons.

// Solution 2 var DecimalPrecision2 = (function() { if (Number.EPSILON === undefined) { Number.EPSILON = Math.pow(2, -52); } if (Math.trunc === undefined) { Math.trunc = function(v) { return v < 0 ? Math.ceil(v) : Math.floor(v); }; } var powers = [ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 ]; var intpow10 = function(power) { if (power < 0 || power > 22) { return Math.pow(10, power); } return powers[power]; }; var isRound = function(num, decimalPlaces) { //return decimalPlaces >= 0 && // +num.toFixed(decimalPlaces) === num; var p = intpow10(decimalPlaces); return Math.round(num * p) / p === num; }; var decimalAdjust = function(type, num, decimalPlaces) { if (type !== 'round' && isRound(num, decimalPlaces || 0)) return num; var p = intpow10(decimalPlaces || 0); var n = (num * p) * (1 + Number.EPSILON); return Math[type](n) / p; }; return { // Decimal round (half away from zero) round: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces); }, // Decimal ceil ceil: function(num, decimalPlaces) { return decimalAdjust('ceil', num, decimalPlaces); }, // Decimal floor floor: function(num, decimalPlaces) { return decimalAdjust('floor', num, decimalPlaces); }, // Decimal trunc trunc: function(num, decimalPlaces) { return decimalAdjust('trunc', num, decimalPlaces); }, // Format using fixed-point notation toFixed: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces).toFixed(decimalPlaces); } }; })(); // test rounding of half console.log(DecimalPrecision2.round(0.5)); // 1 console.log(DecimalPrecision2.round(-0.5)); // -1 // testing very small numbers console.log(DecimalPrecision2.ceil(1e-8, 2) === 0.01); console.log(DecimalPrecision2.floor(1e-8, 2) === 0); // testing simple cases console.log(DecimalPrecision2.round(5.12, 1) === 5.1); console.log(DecimalPrecision2.round(-5.12, 1) === -5.1); console.log(DecimalPrecision2.ceil(5.12, 1) === 5.2); console.log(DecimalPrecision2.ceil(-5.12, 1) === -5.1); console.log(DecimalPrecision2.floor(5.12, 1) === 5.1); console.log(DecimalPrecision2.floor(-5.12, 1) === -5.2); console.log(DecimalPrecision2.trunc(5.12, 1) === 5.1); console.log(DecimalPrecision2.trunc(-5.12, 1) === -5.1); // testing edge cases for round console.log(DecimalPrecision2.round(1.005, 2) === 1.01); console.log(DecimalPrecision2.round(39.425, 2) === 39.43); console.log(DecimalPrecision2.round(-1.005, 2) === -1.01); console.log(DecimalPrecision2.round(-39.425, 2) === -39.43); // testing edge cases for ceil console.log(DecimalPrecision2.ceil(9.13, 2) === 9.13); console.log(DecimalPrecision2.ceil(65.18, 2) === 65.18); console.log(DecimalPrecision2.ceil(-2.26, 2) === -2.26); console.log(DecimalPrecision2.ceil(-18.15, 2) === -18.15); // testing edge cases for floor console.log(DecimalPrecision2.floor(2.26, 2) === 2.26); console.log(DecimalPrecision2.floor(18.15, 2) === 18.15); console.log(DecimalPrecision2.floor(-9.13, 2) === -9.13); console.log(DecimalPrecision2.floor(-65.18, 2) === -65.18); // testing edge cases for trunc console.log(DecimalPrecision2.trunc(2.26, 2) === 2.26); console.log(DecimalPrecision2.trunc(18.15, 2) === 18.15); console.log(DecimalPrecision2.trunc(-2.26, 2) === -2.26); console.log(DecimalPrecision2.trunc(-18.15, 2) === -18.15); // testing round to tens and hundreds console.log(DecimalPrecision2.round(1262.48, -1) === 1260); console.log(DecimalPrecision2.round(1262.48, -2) === 1300); // testing toFixed() console.log(DecimalPrecision2.toFixed(1.005, 2) === "1.01");

Solution 3: double rounding

This solution uses the toPrecision() method to strip the floating-point round-off errors.

// Solution 3 var DecimalPrecision3 = (function() { if (Math.trunc === undefined) { Math.trunc = function(v) { return v < 0 ? Math.ceil(v) : Math.floor(v); }; } var powers = [ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 ]; var intpow10 = function(power) { if (power < 0 || power > 22) { return Math.pow(10, power); } return powers[power]; }; // Eliminate binary floating-point inaccuracies. var stripError = function(num) { if (Number.isInteger(num)) return num; return parseFloat(num.toPrecision(15)); }; var decimalAdjust = function myself(type, num, decimalPlaces) { if (type === 'round' && num < 0) return -myself(type, -num, decimalPlaces); var p = intpow10(decimalPlaces || 0); var n = stripError(num * p); return Math[type](n) / p; }; return { // Decimal round (half away from zero) round: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces); }, // Decimal ceil ceil: function(num, decimalPlaces) { return decimalAdjust('ceil', num, decimalPlaces); }, // Decimal floor floor: function(num, decimalPlaces) { return decimalAdjust('floor', num, decimalPlaces); }, // Decimal trunc trunc: function(num, decimalPlaces) { return decimalAdjust('trunc', num, decimalPlaces); }, // Format using fixed-point notation toFixed: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces).toFixed(decimalPlaces); } }; })(); // test rounding of half console.log(DecimalPrecision3.round(0.5)); // 1 console.log(DecimalPrecision3.round(-0.5)); // -1 // testing very small numbers console.log(DecimalPrecision3.ceil(1e-8, 2) === 0.01); console.log(DecimalPrecision3.floor(1e-8, 2) === 0); // testing simple cases console.log(DecimalPrecision3.round(5.12, 1) === 5.1); console.log(DecimalPrecision3.round(-5.12, 1) === -5.1); console.log(DecimalPrecision3.ceil(5.12, 1) === 5.2); console.log(DecimalPrecision3.ceil(-5.12, 1) === -5.1); console.log(DecimalPrecision3.floor(5.12, 1) === 5.1); console.log(DecimalPrecision3.floor(-5.12, 1) === -5.2); console.log(DecimalPrecision3.trunc(5.12, 1) === 5.1); console.log(DecimalPrecision3.trunc(-5.12, 1) === -5.1); // testing edge cases for round console.log(DecimalPrecision3.round(1.005, 2) === 1.01); console.log(DecimalPrecision3.round(39.425, 2) === 39.43); console.log(DecimalPrecision3.round(-1.005, 2) === -1.01); console.log(DecimalPrecision3.round(-39.425, 2) === -39.43); // testing edge cases for ceil console.log(DecimalPrecision3.ceil(9.13, 2) === 9.13); console.log(DecimalPrecision3.ceil(65.18, 2) === 65.18); console.log(DecimalPrecision3.ceil(-2.26, 2) === -2.26); console.log(DecimalPrecision3.ceil(-18.15, 2) === -18.15); // testing edge cases for floor console.log(DecimalPrecision3.floor(2.26, 2) === 2.26); console.log(DecimalPrecision3.floor(18.15, 2) === 18.15); console.log(DecimalPrecision3.floor(-9.13, 2) === -9.13); console.log(DecimalPrecision3.floor(-65.18, 2) === -65.18); // testing edge cases for trunc console.log(DecimalPrecision3.trunc(2.26, 2) === 2.26); console.log(DecimalPrecision3.trunc(18.15, 2) === 18.15); console.log(DecimalPrecision3.trunc(-2.26, 2) === -2.26); console.log(DecimalPrecision3.trunc(-18.15, 2) === -18.15); // testing round to tens and hundreds console.log(DecimalPrecision3.round(1262.48, -1) === 1260); console.log(DecimalPrecision3.round(1262.48, -2) === 1300); // testing toFixed() console.log(DecimalPrecision3.toFixed(1.005, 2) === "1.01");

Solution 4: double rounding v2

This solution is just like Solution 3, however it uses a custom toPrecision() function.

// Solution 4 var DecimalPrecision4 = (function() { if (Math.trunc === undefined) { Math.trunc = function(v) { return v < 0 ? Math.ceil(v) : Math.floor(v); }; } var powers = [ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 ]; var intpow10 = function(power) { if (power < 0 || power > 22) { return Math.pow(10, power); } return powers[power]; }; var toPrecision = function(num, significantDigits) { // Return early for ±0, NaN and Infinity. if (!num || !Number.isFinite(num)) return num; // Compute shift of the decimal point (sf - leftSidedDigits). var shift = significantDigits - 1 - Math.floor(Math.log10(Math.abs(num))); // Return if rounding to the same or higher precision. var decimalPlaces = 0; for (var p = 1; num != Math.round(num * p) / p; p *= 10) decimalPlaces++; if (shift >= decimalPlaces) return num; // Round to "shift" fractional digits var scale = intpow10(Math.abs(shift)); return shift > 0 ? Math.round(num * scale) / scale : Math.round(num / scale) * scale; }; // Eliminate binary floating-point inaccuracies. var stripError = function(num) { if (Number.isInteger(num)) return num; return toPrecision(num, 15); }; var decimalAdjust = function myself(type, num, decimalPlaces) { if (type === 'round' && num < 0) return -myself(type, -num, decimalPlaces); var p = intpow10(decimalPlaces || 0); var n = stripError(num * p); return Math[type](n) / p; }; return { // Decimal round (half away from zero) round: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces); }, // Decimal ceil ceil: function(num, decimalPlaces) { return decimalAdjust('ceil', num, decimalPlaces); }, // Decimal floor floor: function(num, decimalPlaces) { return decimalAdjust('floor', num, decimalPlaces); }, // Decimal trunc trunc: function(num, decimalPlaces) { return decimalAdjust('trunc', num, decimalPlaces); }, // Format using fixed-point notation toFixed: function(num, decimalPlaces) { return decimalAdjust('round', num, decimalPlaces).toFixed(decimalPlaces); } }; })(); // test rounding of half console.log(DecimalPrecision4.round(0.5)); // 1 console.log(DecimalPrecision4.round(-0.5)); // -1 // testing very small numbers console.log(DecimalPrecision4.ceil(1e-8, 2) === 0.01); console.log(DecimalPrecision4.floor(1e-8, 2) === 0); // testing simple cases console.log(DecimalPrecision4.round(5.12, 1) === 5.1); console.log(DecimalPrecision4.round(-5.12, 1) === -5.1); console.log(DecimalPrecision4.ceil(5.12, 1) === 5.2); console.log(DecimalPrecision4.ceil(-5.12, 1) === -5.1); console.log(DecimalPrecision4.floor(5.12, 1) === 5.1); console.log(DecimalPrecision4.floor(-5.12, 1) === -5.2); console.log(DecimalPrecision4.trunc(5.12, 1) === 5.1); console.log(DecimalPrecision4.trunc(-5.12, 1) === -5.1); // testing edge cases for round console.log(DecimalPrecision4.round(1.005, 2) === 1.01); console.log(DecimalPrecision4.round(39.425, 2) === 39.43); console.log(DecimalPrecision4.round(-1.005, 2) === -1.01); console.log(DecimalPrecision4.round(-39.425, 2) === -39.43); // testing edge cases for ceil console.log(DecimalPrecision4.ceil(9.13, 2) === 9.13); console.log(DecimalPrecision4.ceil(65.18, 2) === 65.18); console.log(DecimalPrecision4.ceil(-2.26, 2) === -2.26); console.log(DecimalPrecision4.ceil(-18.15, 2) === -18.15); // testing edge cases for floor console.log(DecimalPrecision4.floor(2.26, 2) === 2.26); console.log(DecimalPrecision4.floor(18.15, 2) === 18.15); console.log(DecimalPrecision4.floor(-9.13, 2) === -9.13); console.log(DecimalPrecision4.floor(-65.18, 2) === -65.18); // testing edge cases for trunc console.log(DecimalPrecision4.trunc(2.26, 2) === 2.26); console.log(DecimalPrecision4.trunc(18.15, 2) === 18.15); console.log(DecimalPrecision4.trunc(-2.26, 2) === -2.26); console.log(DecimalPrecision4.trunc(-18.15, 2) === -18.15); // testing round to tens and hundreds console.log(DecimalPrecision4.round(1262.48, -1) === 1260); console.log(DecimalPrecision4.round(1262.48, -2) === 1300); // testing toFixed() console.log(DecimalPrecision4.toFixed(1.005, 2) === "1.01");

Benchmarks

http://jsbench.github.io/#31ec3a8b3d22bd840f8e6822e681a3ac

Here is a benchmark comparing the operations per second in the solutions above on Chrome 85.0.4183.83. Obviously all browsers differ, so your mileage may vary.

https://i.stack.imgur.com/llFZn.png

Thanks @Mike for adding a screenshot of the benchmark.


Nice, I see that you did run a more thorough performance test on the difference. I just did a quick comparison in devtools and they came back with very similar variance in execution time, but I was wondering if the performance difference would begin to show at a really high volume/frequency.
Hey @AmrAli. This is an awesome answer. One of the few that are as accurate as possible. Thanks! 👍 I particularly like Solution 2 for it's speed. One thing I noticed is the speed can be increased by ~5-10% if the early-return check for isRound is removed. It adds more operations than just running the decimalAdjust function. Returning early by using isRound actually takes longer.
I've looked through many solutions on StackOverflow and this one is the best. The Exponential notation solution with the mod for negative numbers seems to work best for currency and matches the Java round calculations on the backend.
This answer is a very good example why you shouldn't just check the first comment in stackoverflow. Those 2 above are just simply wrong.
Instead of providing a benchmark you should have run a test showing whether any of these techniques actually works, for say 0.0001 < x < 0.9999. You might get a surprise how many of them fail. Over 90%.
M
Mark Amery

This question is complicated.

Suppose we have a function, roundTo2DP(num), that takes a float as an argument and returns a value rounded to 2 decimal places. What should each of these expressions evaluate to?

roundTo2DP(0.014999999999999999)

roundTo2DP(0.0150000000000000001)

roundTo2DP(0.015)

The 'obvious' answer is that the first example should round to 0.01 (because it's closer to 0.01 than to 0.02) while the other two should round to 0.02 (because 0.0150000000000000001 is closer to 0.02 than to 0.01, and because 0.015 is exactly halfway between them and there is a mathematical convention that such numbers get rounded up).

The catch, which you may have guessed, is that roundTo2DP cannot possibly be implemented to give those obvious answers, because all three numbers passed to it are the same number. IEEE 754 binary floating point numbers (the kind used by JavaScript) can't exactly represent most non-integer numbers, and so all three numeric literals above get rounded to a nearby valid floating point number. This number, as it happens, is exactly

0.01499999999999999944488848768742172978818416595458984375

which is closer to 0.01 than to 0.02.

You can see that all three numbers are the same at your browser console, Node shell, or other JavaScript interpreter. Just compare them:

> 0.014999999999999999 === 0.0150000000000000001
true

So when I write m = 0.0150000000000000001, the exact value of m that I end up with is closer to 0.01 than it is to 0.02. And yet, if I convert m to a String...

> var m = 0.0150000000000000001;
> console.log(String(m));
0.015
> var m = 0.014999999999999999;
> console.log(String(m));
0.015

... I get 0.015, which should round to 0.02, and which is noticeably not the 56-decimal-place number I earlier said that all of these numbers were exactly equal to. So what dark magic is this?

The answer can be found in the ECMAScript specification, in section 7.1.12.1: ToString applied to the Number type. Here the rules for converting some Number m to a String are laid down. The key part is point 5, in which an integer s is generated whose digits will be used in the String representation of m:

let n, k, and s be integers such that k ≥ 1, 10k-1 ≤ s < 10k, the Number value for s × 10n-k is m, and k is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these criteria.

The key part here is the requirement that "k is as small as possible". What that requirement amounts to is a requirement that, given a Number m, the value of String(m) must have the least possible number of digits while still satisfying the requirement that Number(String(m)) === m. Since we already know that 0.015 === 0.0150000000000000001, it's now clear why String(0.0150000000000000001) === '0.015' must be true.

Of course, none of this discussion has directly answered what roundTo2DP(m) should return. If m's exact value is 0.01499999999999999944488848768742172978818416595458984375, but its String representation is '0.015', then what is the correct answer - mathematically, practically, philosophically, or whatever - when we round it to two decimal places?

There is no single correct answer to this. It depends upon your use case. You probably want to respect the String representation and round upwards when:

The value being represented is inherently discrete, e.g. an amount of currency in a 3-decimal-place currency like dinars. In this case, the true value of a Number like 0.015 is 0.015, and the 0.0149999999... representation that it gets in binary floating point is a rounding error. (Of course, many will argue, reasonably, that you should use a decimal library for handling such values and never represent them as binary floating point Numbers in the first place.)

The value was typed by a user. In this case, again, the exact decimal number entered is more 'true' than the nearest binary floating point representation.

On the other hand, you probably want to respect the binary floating point value and round downwards when your value is from an inherently continuous scale - for instance, if it's a reading from a sensor.

These two approaches require different code. To respect the String representation of the Number, we can (with quite a bit of reasonably subtle code) implement our own rounding that acts directly on the String representation, digit by digit, using the same algorithm you would've used in school when you were taught how to round numbers. Below is an example which respects the OP's requirement of representing the number to 2 decimal places "only when necessary" by stripping trailing zeroes after the decimal point; you may, of course, need to tweak it to your precise needs.

/**
 * Converts num to a decimal string (if it isn't one already) and then rounds it
 * to at most dp decimal places.
 *
 * For explanation of why you'd want to perform rounding operations on a String
 * rather than a Number, see http://stackoverflow.com/a/38676273/1709587
 *
 * @param {(number|string)} num
 * @param {number} dp
 * @return {string}
 */
function roundStringNumberWithoutTrailingZeroes (num, dp) {
    if (arguments.length != 2) throw new Error("2 arguments required");

    num = String(num);
    if (num.indexOf('e+') != -1) {
        // Can't round numbers this large because their string representation
        // contains an exponent, like 9.99e+37
        throw new Error("num too large");
    }
    if (num.indexOf('.') == -1) {
        // Nothing to do
        return num;
    }

    var parts = num.split('.'),
        beforePoint = parts[0],
        afterPoint = parts[1],
        shouldRoundUp = afterPoint[dp] >= 5,
        finalNumber;

    afterPoint = afterPoint.slice(0, dp);
    if (!shouldRoundUp) {
        finalNumber = beforePoint + '.' + afterPoint;
    } else if (/^9+$/.test(afterPoint)) {
        // If we need to round up a number like 1.9999, increment the integer
        // before the decimal point and discard the fractional part.
        finalNumber = Number(beforePoint)+1;
    } else {
        // Starting from the last digit, increment digits until we find one
        // that is not 9, then stop
        var i = dp-1;
        while (true) {
            if (afterPoint[i] == '9') {
                afterPoint = afterPoint.substr(0, i) +
                             '0' +
                             afterPoint.substr(i+1);
                i--;
            } else {
                afterPoint = afterPoint.substr(0, i) +
                             (Number(afterPoint[i]) + 1) +
                             afterPoint.substr(i+1);
                break;
            }
        }

        finalNumber = beforePoint + '.' + afterPoint;
    }

    // Remove trailing zeroes from fractional part before returning
    return finalNumber.replace(/0+$/, '')
}

Example usage:

> roundStringNumberWithoutTrailingZeroes(1.6, 2)
'1.6'
> roundStringNumberWithoutTrailingZeroes(10000, 2)
'10000'
> roundStringNumberWithoutTrailingZeroes(0.015, 2)
'0.02'
> roundStringNumberWithoutTrailingZeroes('0.015000', 2)
'0.02'
> roundStringNumberWithoutTrailingZeroes(1, 1)
'1'
> roundStringNumberWithoutTrailingZeroes('0.015', 2)
'0.02'
> roundStringNumberWithoutTrailingZeroes(0.01499999999999999944488848768742172978818416595458984375, 2)
'0.02'
> roundStringNumberWithoutTrailingZeroes('0.01499999999999999944488848768742172978818416595458984375', 2)
'0.01'

The function above is probably what you want to use to avoid users ever witnessing numbers that they have entered being rounded wrongly.

(As an alternative, you could also try the round10 library which provides a similarly-behaving function with a wildly different implementation.)

But what if you have the second kind of Number - a value taken from a continuous scale, where there's no reason to think that approximate decimal representations with fewer decimal places are more accurate than those with more? In that case, we don't want to respect the String representation, because that representation (as explained in the spec) is already sort-of-rounded; we don't want to make the mistake of saying "0.014999999...375 rounds up to 0.015, which rounds up to 0.02, so 0.014999999...375 rounds up to 0.02".

Here we can simply use the built-in toFixed method. Note that by calling Number() on the String returned by toFixed, we get a Number whose String representation has no trailing zeroes (thanks to the way JavaScript computes the String representation of a Number, discussed earlier in this answer).

/**
 * Takes a float and rounds it to at most dp decimal places. For example
 *
 *     roundFloatNumberWithoutTrailingZeroes(1.2345, 3)
 *
 * returns 1.234
 *
 * Note that since this treats the value passed to it as a floating point
 * number, it will have counterintuitive results in some cases. For instance,
 * 
 *     roundFloatNumberWithoutTrailingZeroes(0.015, 2)
 *
 * gives 0.01 where 0.02 might be expected. For an explanation of why, see
 * http://stackoverflow.com/a/38676273/1709587. You may want to consider using the
 * roundStringNumberWithoutTrailingZeroes function there instead.
 *
 * @param {number} num
 * @param {number} dp
 * @return {number}
 */
function roundFloatNumberWithoutTrailingZeroes (num, dp) {
    var numToFixedDp = Number(num).toFixed(dp);
    return Number(numToFixedDp);
}

You method fails on 16.996 rounding to 2 decimals. It goes into this branch: else if (/^9+$/.test(afterPoint)) {, and then finalNumber is number and not a string which fails at the end: return finalNumber.replace(/0+$/, '')
B
Bibhas Debnath

Consider .toFixed() and .toPrecision():

http://www.javascriptkit.com/javatutors/formatnumber.shtml


In firefox, 3.9935.toFixed(3) → "3.994", 3.9945.toFixed(3) → "3.994", 3.9955.toFixed(3) → "3.995", 3.9965.toFixed(3) → "3.997". Is it expected behavior? For example, shouldn't 3.9945.toFixed(3) return "3.995" or 3.9955.toFixed(3) return "3.996"?
A Kunin has told a bit about this at below answer.
toFixed() sometimes doesn't round correctly. I've seen it myself. Math.round is better
N
Ninjakannon

One can use .toFixed(NumberOfDecimalPlaces).

var str = 10.234.toFixed(2); // => '10.23'
var number = Number(str); // => 10.23

This is a duplicate of user3711536's answer—though equally without any explanation whatsoever or link to documentation. At least the other answer had more sample input and output.
P
Peter Mortensen

None of the answers found here is correct. stinkycheeseman asked to round up, but you all rounded the number.

To round up, use this:

Math.ceil(num * 100)/100;

1.3549999999999998 will return incorrect result. Should be 1.35 but result is 1.36.
Most values will return an incorrect result. Try it.
B
Bibhas Debnath

Here is a simple way to do it:

Math.round(value * 100) / 100

You might want to go ahead and make a separate function to do it for you though:

function roundToTwo(value) {
    return(Math.round(value * 100) / 100);
}

Then you would simply pass in the value.

You could enhance it to round to any arbitrary number of decimals by adding a second parameter.

function myRound(value, places) {
    var multiplier = Math.pow(10, places);

    return (Math.round(value * multiplier) / multiplier);
}

Here's a brief video tutorial how to round to 2 decimal in js Wouldn't it be easier to just use the built-in toFixed(N) method?
P
Peter Mortensen

A precise rounding method. Source: Mozilla

(function(){

    /**
     * Decimal adjustment of a number.
     *
     * @param   {String}    type    The type of adjustment.
     * @param   {Number}    value   The number.
     * @param   {Integer}   exp     The exponent (the 10 logarithm of the adjustment base).
     * @returns {Number}            The adjusted value.
     */
    function decimalAdjust(type, value, exp) {
        // If the exp is undefined or zero...
        if (typeof exp === 'undefined' || +exp === 0) {
            return Math[type](value);
        }
        value = +value;
        exp = +exp;
        // If the value is not a number or the exp is not an integer...
        if (isNaN(value) || !(typeof exp === 'number' && exp % 1 === 0)) {
            return NaN;
        }
        // Shift
        value = value.toString().split('e');
        value = Math[type](+(value[0] + 'e' + (value[1] ? (+value[1] - exp) : -exp)));
        // Shift back
        value = value.toString().split('e');
        return +(value[0] + 'e' + (value[1] ? (+value[1] + exp) : exp));
    }

    // Decimal round
    if (!Math.round10) {
        Math.round10 = function(value, exp) {
            return decimalAdjust('round', value, exp);
        };
    }
    // Decimal floor
    if (!Math.floor10) {
        Math.floor10 = function(value, exp) {
            return decimalAdjust('floor', value, exp);
        };
    }
    // Decimal ceil
    if (!Math.ceil10) {
        Math.ceil10 = function(value, exp) {
            return decimalAdjust('ceil', value, exp);
        };
    }
})();

Examples:

// Round
Math.round10(55.55, -1); // 55.6
Math.round10(55.549, -1); // 55.5
Math.round10(55, 1); // 60
Math.round10(54.9, 1); // 50
Math.round10(-55.55, -1); // -55.5
Math.round10(-55.551, -1); // -55.6
Math.round10(-55, 1); // -50
Math.round10(-55.1, 1); // -60
Math.round10(1.005, -2); // 1.01 -- compare this with Math.round(1.005*100)/100 above
// Floor
Math.floor10(55.59, -1); // 55.5
Math.floor10(59, 1); // 50
Math.floor10(-55.51, -1); // -55.6
Math.floor10(-51, 1); // -60
// Ceil
Math.ceil10(55.51, -1); // 55.6
Math.ceil10(51, 1); // 60
Math.ceil10(-55.59, -1); // -55.5
Math.ceil10(-59, 1); // -50

P
Peter Mortensen

This may help you:

var result = Math.round(input*100)/100;

For more information, you can have a look at Math.round(num) vs num.toFixed(0) and browser inconsistencies


Why in the world does the accepted answer have so many more votes than this one since they're practically the same thing, but this one was posted 1 minute after the accepted one?
Math.round(1.965 * 100) / 100 will be 1.96 . it's wrong.
V
Vikasdeep Singh

For me Math.round() was not giving correct answer. I found toFixed(2) works better. Below are examples of both:

console.log(Math.round(43000 / 80000) * 100); // wrong answer console.log(((43000 / 80000) * 100).toFixed(2)); // correct answer


Important to note that toFixed does not perform a rounding, and that Math.round just rounds to the nearest whole number. To preserve the decimals we therefore need to multiply the original number by the number of powers of ten whose zeros representing your desired number of decimals, and then divide the result by the same number. In your case: Math.round(43000 / 80000 * 100 * 100) / 100. At last toFixed(2) may be applied in order to ensure that there is always two decimals in the result (with trailing zeros where needed) – perfect for right-aligning a series of numbers presented vertically :)
d
dmarcosl

Use this function Number(x).toFixed(2);


Wrap it all in Number again, if you don't want it returned as a string: Number(Number(x).toFixed(2));
The Number call is not necessary, x.toFixed(2) works.
@bgusach Number call needed, since the statement x.toFixed(2) return string and not a number. To convert again to number we need to wrap with Number
When using this method (1).toFixed(2) returns 1.00, but questioner needed 1 in this case.
This doesn't work, 1.005.toFixed(2) yields "1" when it should be "1.01".
u
user3711536
+(10).toFixed(2); // = 10
+(10.12345).toFixed(2); // = 10.12

(10).toFixed(2); // = 10.00
(10.12345).toFixed(2); // = 10.12

An explanation would be in order. E.g., what is the idea/gist? Why is toFixed() all there is to it? Is it from a particular library? What version of JavaScript/when was it introduced? From the Help Center: "...always explain why the solution you're presenting is appropriate and how it works". Please respond by editing (changing) your answer, not here in comments (without "Edit:", "Update:", or similar - the answer should appear as if it was written today).
OK, the OP has left the building. Perhaps someone else can chime in?
P
Peter Mortensen

Try this lightweight solution:

function round(x, digits){
  return parseFloat(x.toFixed(digits))
}

 round(1.222,  2);
 // 1.22
 round(1.222, 10);
 // 1.222

Anyone know if there's any difference between this and return Number(x.toFixed(digits))?
@JoeRocc ... should make no difference as far a I can see since .toFixed() allows only for numbers anyways .
This answer has the same problem as mentioned several times on this page. Try round(1.005, 2) and see a result of 1 instead of 1.01.
seems more a problem of the rounding algo? - there are more than one would imagine: en.wikipedia.org/wiki/Rounding ... round(0.995, 2) => 0.99; round(1.006, 2) => 1.01 ; round(1.005, 2) => 1
This works, but it adds unnecessary complexity to the system as converts a float into a string and then parses the string back to a float.
P
Peter Mortensen

If you are using the Lodash library, you can use the round method of Lodash like following.

_.round(number, precision)

For example:

_.round(1.7777777, 2) = 1.78

@Peter The set of functionalities that Lodash provide is really good compared to standard Javascript. However, I heard that Lodash has some performance issue with compare to standard JS. codeburst.io/…
I accept your point that there are performance drawbacks with using lodash. I think that those issues are common to many abstractions. But just look at how many answers there are on this thread and how the intuitive solutions fail for edge cases. We have seen this pattern with jQuery and the root problem was solved when browsers adopted a common standard that solved most of our use cases. Performance bottlenecks were then moved to the browser engines. I think the same should happen to lodash. :)
P
Peter Mortensen

There are a couple of ways to do that. For people like me, Lodash's variant

function round(number, precision) {
    var pair = (number + 'e').split('e')
    var value = Math.round(pair[0] + 'e' + (+pair[1] + precision))
    pair = (value + 'e').split('e')
    return +(pair[0] + 'e' + (+pair[1] - precision))
}

Usage:

round(0.015, 2) // 0.02
round(1.005, 2) // 1.01

If your project uses jQuery or Lodash, you can also find the proper round method in the libraries.


The second option will return a string with exactly two decimal points. The question asks for decimal points only if necessary. The first option is better in this case.
@MarcosLima Number.toFixed() will return a string but with a plus symbol before it, JS interpreter will convert the string to a number. This is a syntax sugar.
On Firefox, alert((+1234).toFixed(2)) shows "1234.00".
On Firefox, alert(+1234.toFixed(2)) throws SyntaxError: identifier starts immediately after numeric literal. I stick with the 1st option.
This doesn't work in some edge cases: try (jsfiddle) with 362.42499999999995. Expected result (as in PHP echo round(362.42499999999995, 2)): 362.43. Actual result: 362.42
p
pery mimon

2017
Just use native code .toFixed()

number = 1.2345;
number.toFixed(2) // "1.23"

If you need to be strict and add digits just if needed it can use replace

number = 1; // "1"
number.toFixed(5).replace(/\.?0*$/g,'');

The toFixed method returns a string. If you want a number result you'll need to send the result of toFixed to parseFloat.
@Zambonilli Or just multiply by 1 if it necessary. but because fixed number most cases are for display and not for calculation string is the right format
-1; not only was toFixed suggested by multiple answers years before yours, but it fails to satisfy the "only if necessary" condition in the question; (1).toFixed(2) gives "1.00" where the asker desired "1".
Ok got it. I add some solution also for that case
If you're using lodash, it's even easier: _.round(number, decimalPlace) Deleted my last comment, cuz it has an issue. Lodash _.round DOES work, though. 1.005 with decimal place of 2 converts to 1.01.
M
Matas Vaitkevicius

Since ES6 there is a 'proper' way (without overriding statics and creating workarounds) to do this by using toPrecision

var x = 1.49999999999; console.log(x.toPrecision(4)); console.log(x.toPrecision(3)); console.log(x.toPrecision(2)); var y = Math.PI; console.log(y.toPrecision(6)); console.log(y.toPrecision(5)); console.log(y.toPrecision(4)); var z = 222.987654 console.log(z.toPrecision(6)); console.log(z.toPrecision(5)); console.log(z.toPrecision(4));

then you can just parseFloat and zeroes will 'go away'.

console.log(parseFloat((1.4999).toPrecision(3))); console.log(parseFloat((1.005).toPrecision(3))); console.log(parseFloat((1.0051).toPrecision(3)));

It doesn't solve the '1.005 rounding problem' though - since it is intrinsic to how float fractions are being processed.

console.log(1.005 - 0.005);

If you are open to libraries you can use bignumber.js

console.log(1.005 - 0.005); console.log(new BigNumber(1.005).minus(0.005)); console.log(new BigNumber(1.005).round(4)); console.log(new BigNumber(1.005).round(3)); console.log(new BigNumber(1.005).round(2)); console.log(new BigNumber(1.005).round(1));


(1.005).toPrecision(3) still returns 1.00 instead of 1.01 actually.
toPrecision returns a string which changes the desired output type.
@Giacomo It is not a flaw of .toPrecision method, it is a specificity of floating-point numbers (which numbers in JS are) — try 1.005 - 0.005, it will return 0.9999999999999999.
(1).toPrecision(3) returns '1.00', but questioner wanted to have 1 in this case.
As @Giacomo said, this answer seems to confuse "significant digits" with "rounding to a number of decimal places". toPrecision does the format, not the latter, and is not an answer to the OP's question, although it may seem at first relevant it gets a lot wrong. See en.wikipedia.org/wiki/Significant_figures. For example Number(123.4).toPrecision(2) returns "1.2e+2" and Number(12.345).toPrecision(2) returns "12". I'd also agree with @adamduren's point that it returns a string which is not desirable (not a huge problem but not desirable).
M
Marcin Wanago

The easiest approach would be to use toFixed and then strip trailing zeros using the Number function:

const number = 15.5;
Number(number.toFixed(2)); // 15.5
const number = 1.7777777;
Number(number.toFixed(2)); // 1.78

this does not work for all cases. do extensive tests before posting answers.
@baburao Please post a case in which the above solution doesn't work
const number = 15; Number(number.toFixed(2)); //15.00 instead of 15
@KevinJhangiani const number = 15; Number(number.toFixed(2)); // 15 - I tested it both on newest Chrome and Firefox
The commenters are totally right, and I realized the error in my code after posting that!
P
Peter Mortensen

MarkG and Lavamantis offered a much better solution than the one that has been accepted. It's a shame they don't get more upvotes!

Here is the function I use to solve the floating point decimals issues also based on MDN. It is even more generic (but less concise) than Lavamantis's solution:

function round(value, exp) {
  if (typeof exp === 'undefined' || +exp === 0)
    return Math.round(value);

  value = +value;
  exp  = +exp;

  if (isNaN(value) || !(typeof exp === 'number' && exp % 1 === 0))
    return NaN;

  // Shift
  value = value.toString().split('e');
  value = Math.round(+(value[0] + 'e' + (value[1] ? (+value[1] + exp) : exp)));

  // Shift back
  value = value.toString().split('e');
  return +(value[0] + 'e' + (value[1] ? (+value[1] - exp) : -exp));
}

Use it with:

round(10.8034, 2);      // Returns 10.8
round(1.275, 2);        // Returns 1.28
round(1.27499, 2);      // Returns 1.27
round(1.2345678e+2, 2); // Returns 123.46

Compared to Lavamantis's solution, we can do...

round(1234.5678, -2); // Returns 1200
round("123.45");      // Returns 123

Your solution does not cover some cases as opposed to MDN's solution. While it may be shorter, it is not accurate...
round(-1835.665,2) => -1835.66
j
justinsg

One way to achieve such a rounding only if necessary is to use Number.prototype.toLocaleString():

myNumber.toLocaleString('en', {maximumFractionDigits:2, useGrouping:false})

This will provide exactly the output you expect, but as strings. You can still convert those back to numbers if that's not the data type you expect.


This is the cleanest solution there is by far and sidesteps all the complicated floating point issues, but per MDN support is still incomplete - Safari doesn't support passing arguments to toLocaleString yet.
@MarkAmery For now, only Android Browser have some issues: caniuse.com/#search=toLocaleString
P
Peter Mortensen

It may work for you,

Math.round(num * 100)/100;

to know the difference between toFixed and round. You can have a look at Math.round(num) vs num.toFixed(0) and browser inconsistencies.


Math.round(1.965 * 100) / 100 will be 1.96 . it's wrong.
S
Soldeplata Saketos

This is the simplest, more elegant solution (and I am the best of the world;):

function roundToX(num, X) {    
    return +(Math.round(num + "e+"+X)  + "e-"+X);
}
//roundToX(66.66666666,2) => 66.67
//roundToX(10,2) => 10
//roundToX(10.904,2) => 10.9

Modern syntax alternative with fallback values

const roundToX = (num = 0, X = 20) => +(Math.round(num + `e${X}`)  + `e-${X}`)

That's a nice way to rewrite the accepted answer to accept an argument using E notation.
This doesn't work in some edge cases: try (jsfiddle) roundToX(362.42499999999995, 2). Expected result (as in PHP echo round(362.42499999999995, 2)): 362.43. Actual result: 362.42
IMHO, your PHP result is wrong. No matter what comes after the third decimal, if the third decimal is lower than 5, then the second decimal should remain the same. That's the mathematical definition.
To be even more concise "e+" can just be "e" instead.
P
Peter Mortensen
var roundUpto = function(number, upto){
    return Number(number.toFixed(upto));
}
roundUpto(0.1464676, 2);

toFixed(2): Here 2 is the number of digits up to which we want to round this number.


this .toFixed() is more simple to implement. just go through it once.
An explanation would be in order. E.g., what does this "Number" function do? Why is it required? What is the idea/gist? Some more input and output values would also be good, e.g. the previously mentioned 1.005. From the Help Center: "...always explain why the solution you're presenting is appropriate and how it works". Please respond by editing (changing) your answer, not here in comments (without "Edit:", "Update:", or similar - the answer should appear as if it was written today).
P
Peter Mortensen

Another simple solution (without writing any function) may to use toFixed() and then convert to float again:

For example:

var objNumber = 1201203.1256546456;
objNumber = parseFloat(objNumber.toFixed(2))

No. It rounds up for values above (0).5 only..
K
KFish

See @AmrAli's answer for a more thorough run through and performance breakdown of all the various adaptations of this solution.

var DecimalPrecision = (function(){ if (Number.EPSILON === undefined) { Number.EPSILON = Math.pow(2, -52); } if(Number.isInteger === undefined){ Number.isInteger = function(value) { return typeof value === 'number' && isFinite(value) && Math.floor(value) === value; }; } this.isRound = function(n,p){ let l = n.toString().split('.')[1].length; return (p >= l); } this.round = function(n, p=2){ if(Number.isInteger(n) || this.isRound(n,p)) return n; let r = 0.5 * Number.EPSILON * n; let o = 1; while(p-- > 0) o *= 10; if(n<0) o *= -1; return Math.round((n + r) * o) / o; } this.ceil = function(n, p=2){ if(Number.isInteger(n) || this.isRound(n,p)) return n; let r = 0.5 * Number.EPSILON * n; let o = 1; while(p-- > 0) o *= 10; return Math.ceil((n + r) * o) / o; } this.floor = function(n, p=2){ if(Number.isInteger(n) || this.isRound(n,p)) return n; let r = 0.5 * Number.EPSILON * n; let o = 1; while(p-- > 0) o *= 10; return Math.floor((n + r) * o) / o; } return this; })(); console.log(DecimalPrecision.round(1.005)); console.log(DecimalPrecision.ceil(1.005)); console.log(DecimalPrecision.floor(1.005)); console.log(DecimalPrecision.round(1.0049999)); console.log(DecimalPrecision.ceil(1.0049999)); console.log(DecimalPrecision.floor(1.0049999)); console.log(DecimalPrecision.round(2.175495134384,7)); console.log(DecimalPrecision.round(2.1753543549,8)); console.log(DecimalPrecision.round(2.1755465135353,4)); console.log(DecimalPrecision.ceil(17,4)); console.log(DecimalPrecision.ceil(17.1,4)); console.log(DecimalPrecision.ceil(17.1,15));


(DecimalPrecision.round(0.014999999999999999, 2)) // returns 0.02
@KFish DecimalPrecision.ceil(17,0); // 18 and DecimalPrecision.ceil(17,1); // 17.1
@KFish DecimalPrecision.ceil(-5.12, 1); // -5.2 and DecimalPrecision.floor(-5.12, 1); // -5.1
Regardless of any approach, it's important that people understand that there are always going to be some edge cases that don't evaluate correctly. For example in either your version or mine, this DecimalPrecision.ceil(10000000000000000.00111, 4) produces this result 10000000000000000, when it should technically be 10000000000000000.0012. Due to the handling of exponential notation, I would recommend your version over mine, but people need to realize that at best are only ever reducing the probability of error.
"Edit", "Update", etc. do not belong in this post. It ought to be changed to be as if it was written right now. The revision history retains the previous versions for ever. See e.g. Is it recommended to notify the answer "Edits" with an heading followed by the edit content?, When is "EDIT"/"UPDATE" appropriate in a post?, and Why are new editors discouraged & not given an opportunity to explain/defend?
b
bigpotato

Easiest way:

+num.toFixed(2)

It converts it to a string, and then back into an integer / float.


Thanks for this simplest answer. However, what is '+' in +num? It didn't work for me where the decimal val came in string. I did: (num * 1).toFixed(2).
@momo just change the argument to toFixed() to 3. So it would be +num.toFixed(3). That's working the way it's supposed to, 1.005 is rounded to 1.00, which is equal to 1
@Edmund It's supposed to return 1.01, not 1.00
This is a duplicate of user3711536's answer—though this one has some (if insufficinet) explanation.