ChatGPT解决这个技术问题 Extra ChatGPT

Why does changing 0.1f to 0 slow down performance by 10x?

Why does this bit of code,

const float x[16] = {  1.1,   1.2,   1.3,     1.4,   1.5,   1.6,   1.7,   1.8,
                       1.9,   2.0,   2.1,     2.2,   2.3,   2.4,   2.5,   2.6};
const float z[16] = {1.123, 1.234, 1.345, 156.467, 1.578, 1.689, 1.790, 1.812,
                     1.923, 2.034, 2.145,   2.256, 2.367, 2.478, 2.589, 2.690};
float y[16];
for (int i = 0; i < 16; i++)
{
    y[i] = x[i];
}

for (int j = 0; j < 9000000; j++)
{
    for (int i = 0; i < 16; i++)
    {
        y[i] *= x[i];
        y[i] /= z[i];
        y[i] = y[i] + 0.1f; // <--
        y[i] = y[i] - 0.1f; // <--
    }
}

run more than 10 times faster than the following bit (identical except where noted)?

const float x[16] = {  1.1,   1.2,   1.3,     1.4,   1.5,   1.6,   1.7,   1.8,
                       1.9,   2.0,   2.1,     2.2,   2.3,   2.4,   2.5,   2.6};
const float z[16] = {1.123, 1.234, 1.345, 156.467, 1.578, 1.689, 1.790, 1.812,
                     1.923, 2.034, 2.145,   2.256, 2.367, 2.478, 2.589, 2.690};
float y[16];
for (int i = 0; i < 16; i++)
{
    y[i] = x[i];
}

for (int j = 0; j < 9000000; j++)
{
    for (int i = 0; i < 16; i++)
    {
        y[i] *= x[i];
        y[i] /= z[i];
        y[i] = y[i] + 0; // <--
        y[i] = y[i] - 0; // <--
    }
}

when compiling with Visual Studio 2010 SP1. The optimization level was -02 with sse2 enabled. I haven't tested with other compilers.

How did you measure the difference? And what options did you use when you compiled?
Why isn't the compiler just dropping the +/- 0 in this case?!?
@Zyx2000 The compiler isn't anywhere near that stupid. Disassembling a trivial example in LINQPad shows that it spits out the same code whether you use 0, 0f, 0d, or even (int)0 in a context where a double is needed.
what is the optimization level?

j
johv

Welcome to the world of denormalized floating-point! They can wreak havoc on performance!!!

Denormal (or subnormal) numbers are kind of a hack to get some extra values very close to zero out of the floating point representation. Operations on denormalized floating-point can be tens to hundreds of times slower than on normalized floating-point. This is because many processors can't handle them directly and must trap and resolve them using microcode.

If you print out the numbers after 10,000 iterations, you will see that they have converged to different values depending on whether 0 or 0.1 is used.

Here's the test code compiled on x64:

int main() {

    double start = omp_get_wtime();

    const float x[16]={1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6};
    const float z[16]={1.123,1.234,1.345,156.467,1.578,1.689,1.790,1.812,1.923,2.034,2.145,2.256,2.367,2.478,2.589,2.690};
    float y[16];
    for(int i=0;i<16;i++)
    {
        y[i]=x[i];
    }
    for(int j=0;j<9000000;j++)
    {
        for(int i=0;i<16;i++)
        {
            y[i]*=x[i];
            y[i]/=z[i];
#ifdef FLOATING
            y[i]=y[i]+0.1f;
            y[i]=y[i]-0.1f;
#else
            y[i]=y[i]+0;
            y[i]=y[i]-0;
#endif

            if (j > 10000)
                cout << y[i] << "  ";
        }
        if (j > 10000)
            cout << endl;
    }

    double end = omp_get_wtime();
    cout << end - start << endl;

    system("pause");
    return 0;
}

Output:

#define FLOATING
1.78814e-007  1.3411e-007  1.04308e-007  0  7.45058e-008  6.70552e-008  6.70552e-008  5.58794e-007  3.05474e-007  2.16067e-007  1.71363e-007  1.49012e-007  1.2666e-007  1.11759e-007  1.04308e-007  1.04308e-007
1.78814e-007  1.3411e-007  1.04308e-007  0  7.45058e-008  6.70552e-008  6.70552e-008  5.58794e-007  3.05474e-007  2.16067e-007  1.71363e-007  1.49012e-007  1.2666e-007  1.11759e-007  1.04308e-007  1.04308e-007

//#define FLOATING
6.30584e-044  3.92364e-044  3.08286e-044  0  1.82169e-044  1.54143e-044  2.10195e-044  2.46842e-029  7.56701e-044  4.06377e-044  3.92364e-044  3.22299e-044  3.08286e-044  2.66247e-044  2.66247e-044  2.24208e-044
6.30584e-044  3.92364e-044  3.08286e-044  0  1.82169e-044  1.54143e-044  2.10195e-044  2.45208e-029  7.56701e-044  4.06377e-044  3.92364e-044  3.22299e-044  3.08286e-044  2.66247e-044  2.66247e-044  2.24208e-044

Note how in the second run the numbers are very close to zero.

Denormalized numbers are generally rare and thus most processors don't try to handle them efficiently.

To demonstrate that this has everything to do with denormalized numbers, if we flush denormals to zero by adding this to the start of the code:

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);

Then the version with 0 is no longer 10x slower and actually becomes faster. (This requires that the code be compiled with SSE enabled.)

This means that rather than using these weird lower precision almost-zero values, we just round to zero instead.

Timings: Core i7 920 @ 3.5 GHz:

//  Don't flush denormals to zero.
0.1f: 0.564067
0   : 26.7669

//  Flush denormals to zero.
0.1f: 0.587117
0   : 0.341406

In the end, this really has nothing to do with whether it's an integer or floating-point. The 0 or 0.1f is converted/stored into a register outside of both loops. So that has no effect on performance.


I'm still finding it a little weird that the "+ 0" isn't completely optimized out by the compiler by default. Would this have happened if he had put "+ 0.0f"?
@s73v3r That's a very good question. Now that I look at the assembly, not even + 0.0f gets optimized out. If I had to guess, it could be that + 0.0f would have side-effects if y[i] happened to be a signalling NaN or something... I could be wrong though.
Doubles will still run into the same problem in many cases, just at a different numerical magnitude. Flush-to-zero is fine for audio applications (and others where you can afford to lose 1e-38 here and there), but I believe doesn't apply to x87. Without FTZ, the usual fix for audio applications is to inject a very low amplitude (not audible) DC or or square wave signal to jitter numbers away from denormality.
@Isaac because when y[i] is significantly smaller than 0.1 adding it results in a loss of precision because the most significant digit in the number becomes higher.
@s73v3r: The +0.f cannot be optimized out because floating-point has a negative 0, and the result of adding +0.f to -.0f is +0.f. So adding 0.f is not an identity operation and cannot be optimized out.
C
Community

Using gcc and applying a diff to the generated assembly yields only this difference:

73c68,69
<   movss   LCPI1_0(%rip), %xmm1
---
>   movabsq $0, %rcx
>   cvtsi2ssq   %rcx, %xmm1
81d76
<   subss   %xmm1, %xmm0

The cvtsi2ssq one being 10 times slower indeed.

Apparently, the float version uses an XMM register loaded from memory, while the int version converts a real int value 0 to float using the cvtsi2ssq instruction, taking a lot of time. Passing -O3 to gcc doesn't help. (gcc version 4.2.1.)

(Using double instead of float doesn't matter, except that it changes the cvtsi2ssq into a cvtsi2sdq.)

Update

Some extra tests show that it is not necessarily the cvtsi2ssq instruction. Once eliminated (using a int ai=0;float a=ai; and using a instead of 0), the speed difference remains. So @Mysticial is right, the denormalized floats make the difference. This can be seen by testing values between 0 and 0.1f. The turning point in the above code is approximately at 0.00000000000000000000000000000001, when the loops suddenly takes 10 times as long.

Update<<1

A small visualisation of this interesting phenomenon:

Column 1: a float, divided by 2 for every iteration

Column 2: the binary representation of this float

Column 3: the time taken to sum this float 1e7 times

You can clearly see the exponent (the last 9 bits) change to its lowest value, when denormalization sets in. At that point, simple addition becomes 20 times slower.

0.000000000000000000000000000000000100000004670110: 10111100001101110010000011100000 45 ms
0.000000000000000000000000000000000050000002335055: 10111100001101110010000101100000 43 ms
0.000000000000000000000000000000000025000001167528: 10111100001101110010000001100000 43 ms
0.000000000000000000000000000000000012500000583764: 10111100001101110010000110100000 42 ms
0.000000000000000000000000000000000006250000291882: 10111100001101110010000010100000 48 ms
0.000000000000000000000000000000000003125000145941: 10111100001101110010000100100000 43 ms
0.000000000000000000000000000000000001562500072970: 10111100001101110010000000100000 42 ms
0.000000000000000000000000000000000000781250036485: 10111100001101110010000111000000 42 ms
0.000000000000000000000000000000000000390625018243: 10111100001101110010000011000000 42 ms
0.000000000000000000000000000000000000195312509121: 10111100001101110010000101000000 43 ms
0.000000000000000000000000000000000000097656254561: 10111100001101110010000001000000 42 ms
0.000000000000000000000000000000000000048828127280: 10111100001101110010000110000000 44 ms
0.000000000000000000000000000000000000024414063640: 10111100001101110010000010000000 42 ms
0.000000000000000000000000000000000000012207031820: 10111100001101110010000100000000 42 ms
0.000000000000000000000000000000000000006103515209: 01111000011011100100001000000000 789 ms
0.000000000000000000000000000000000000003051757605: 11110000110111001000010000000000 788 ms
0.000000000000000000000000000000000000001525879503: 00010001101110010000100000000000 788 ms
0.000000000000000000000000000000000000000762939751: 00100011011100100001000000000000 795 ms
0.000000000000000000000000000000000000000381469876: 01000110111001000010000000000000 896 ms
0.000000000000000000000000000000000000000190734938: 10001101110010000100000000000000 813 ms
0.000000000000000000000000000000000000000095366768: 00011011100100001000000000000000 798 ms
0.000000000000000000000000000000000000000047683384: 00110111001000010000000000000000 791 ms
0.000000000000000000000000000000000000000023841692: 01101110010000100000000000000000 802 ms
0.000000000000000000000000000000000000000011920846: 11011100100001000000000000000000 809 ms
0.000000000000000000000000000000000000000005961124: 01111001000010000000000000000000 795 ms
0.000000000000000000000000000000000000000002980562: 11110010000100000000000000000000 835 ms
0.000000000000000000000000000000000000000001490982: 00010100001000000000000000000000 864 ms
0.000000000000000000000000000000000000000000745491: 00101000010000000000000000000000 915 ms
0.000000000000000000000000000000000000000000372745: 01010000100000000000000000000000 918 ms
0.000000000000000000000000000000000000000000186373: 10100001000000000000000000000000 881 ms
0.000000000000000000000000000000000000000000092486: 01000010000000000000000000000000 857 ms
0.000000000000000000000000000000000000000000046243: 10000100000000000000000000000000 861 ms
0.000000000000000000000000000000000000000000022421: 00001000000000000000000000000000 855 ms
0.000000000000000000000000000000000000000000011210: 00010000000000000000000000000000 887 ms
0.000000000000000000000000000000000000000000005605: 00100000000000000000000000000000 799 ms
0.000000000000000000000000000000000000000000002803: 01000000000000000000000000000000 828 ms
0.000000000000000000000000000000000000000000001401: 10000000000000000000000000000000 815 ms
0.000000000000000000000000000000000000000000000000: 00000000000000000000000000000000 42 ms
0.000000000000000000000000000000000000000000000000: 00000000000000000000000000000000 42 ms
0.000000000000000000000000000000000000000000000000: 00000000000000000000000000000000 44 ms

An equivalent discussion about ARM can be found in Stack Overflow question Denormalized floating point in Objective-C?.


-Os don't fix it, but -ffast-math does. (I use that all the time, IMO the corner cases where it causes precision trouble shouldn't turn up in a properly designed program anyway.)
There is no conversion at any positive optimization level with gcc-4.6.
@leftaroundabout: compiling an executable (not library) with -ffast-math links some extra startup code that sets FTZ (flush to zero) and DAZ (denormal are zero) in the MXCSR, so the CPU never has to take a slow microcode assist for denormals.
f
fig

It's due to denormalized floating-point use. How to get rid of both it and the performance penalty? Having scoured the Internet for ways of killing denormal numbers, it seems there is no "best" way to do this yet. I have found these three methods that may work best in different environments:

Might not work in some GCC environments: // Requires #include fesetenv(FE_DFL_DISABLE_SSE_DENORMS_ENV);

Might not work in some Visual Studio environments: 1 // Requires #include _mm_setcsr( _mm_getcsr() | (1<<15) | (1<<6) ); // Does both FTZ and DAZ bits. You can also use just hex value 0x8040 to do both. // You might also want to use the underflow mask (1<<11)

Appears to work in both GCC and Visual Studio: // Requires #include // Requires #include _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

The Intel compiler has options to disable denormals by default on modern Intel CPUs. More details here

Compiler switches. -ffast-math, -msse or -mfpmath=sse will disable denormals and make a few other things faster, but unfortunately also do lots of other approximations that might break your code. Test carefully! The equivalent of fast-math for the Visual Studio compiler is /fp:fast but I haven't been able to confirm whether this also disables denormals.1


This sounds like a decent answer to a different but related question (How can I prevent numeric computations from producing denormal results?) It doesn't answer this question, though.
Windows X64 passes a setting of abrupt underflow when it launches .exe, while Windows 32-bit and linux do not. On linux, gcc -ffast-math should set abrupt underflow (but I think not on Windows). Intel compilers are supposed to initialize in main() so that these OS differences don't pass through, but I've been bitten, and need to set it explicitly in the program. Intel CPUs beginning with Sandy Bridge are supposed to handle subnormals arising in add/subtract (but not divide/multiply) efficiently, so there is a case for using gradual underflow.
Microsoft /fp:fast (not a default) doesn't do any of the aggressive things inherent in gcc -ffast-math or ICL (default) /fp:fast. It's more like ICL /fp:source. So you must set /fp: (and, in some cases, underflow mode) explicitly if you wish to compare these compilers.
r
remcycles

Dan Neely's comment ought to be expanded into an answer:

It is not the zero constant 0.0f that is denormalized or causes a slow down, it is the values that approach zero each iteration of the loop. As they come closer and closer to zero, they need more precision to represent and they become denormalized. These are the y[i] values. (They approach zero because x[i]/z[i] is less than 1.0 for all i.)

The crucial difference between the slow and fast versions of the code is the statement y[i] = y[i] + 0.1f;. As soon as this line is executed each iteration of the loop, the extra precision in the float is lost, and the denormalization needed to represent that precision is no longer needed. Afterwards, floating point operations on y[i] remain fast because they aren't denormalized.

Why is the extra precision lost when you add 0.1f? Because floating point numbers only have so many significant digits. Say you have enough storage for three significant digits, then 0.00001 = 1e-5, and 0.00001 + 0.1 = 0.1, at least for this example float format, because it doesn't have room to store the least significant bit in 0.10001.

In short, y[i]=y[i]+0.1f; y[i]=y[i]-0.1f; isn't the no-op you might think it is.

Mystical said this as well: the content of the floats matters, not just the assembly code.

EDIT: To put a finer point on this, not every floating point operation takes the same amount of time to run, even if the machine opcode is the same. For some operands/inputs, the same instruction will take more time to run. This is especially true for denormal numbers.


G
German Garcia

In gcc you can enable FTZ and DAZ with this:

#include <xmmintrin.h>

#define FTZ 1
#define DAZ 1   

void enableFtzDaz()
{
    int mxcsr = _mm_getcsr ();

    if (FTZ) {
            mxcsr |= (1<<15) | (1<<11);
    }

    if (DAZ) {
            mxcsr |= (1<<6);
    }

    _mm_setcsr (mxcsr);
}

also use gcc switches: -msse -mfpmath=sse

(corresponding credits to Carl Hetherington [1])

[1] http://carlh.net/plugins/denormals.php


Also see fesetround() from fenv.h (defined for C99) for another, more portable way of rounding (linux.die.net/man/3/fesetround) (but this would affect all FP operations, not just subnormals)
Are you sure you need 1<<15 and 1<<11 for FTZ? I have only seen 1<<15 quoted elsewhere...
@fig: 1<<11 is for the Underflow Mask. More info here: softpixel.com/~cwright/programming/simd/sse.php
@GermanGarcia this does not answer the OPs question; the question was "Why does this bit of code, runs 10 times faster than..." - you should either attempt to answer that before providing this workaround or provide this in a comment.