ChatGPT解决这个技术问题 Extra ChatGPT

How to get all possible combinations of a list’s elements?

I have a list with 15 numbers in, and I need to write some code that produces all 32,768 combinations of those numbers.

I've found some code (by Googling) that apparently does what I'm looking for, but I found the code fairly opaque and am wary of using it. Plus I have a feeling there must be a more elegant solution.

The only thing that occurs to me would be to just loop through the decimal integers 1–32768 and convert those to binary, and use the binary representation as a filter to pick out the appropriate numbers.

Does anyone know of a better way? Using map(), maybe?

Readers should note that whether the list items are unique is an extremely important consideration, as many algorithms will then overcount some subset (e.g. 'abccc' -> ['', 'a', 'b', 'c', 'c', 'c', 'ac', 'ac', 'ac', ...]. An easy workaround is to just shove all elements in a set before getting their permutations.
@ninjagecko Using the Set library is not efficient as each are O(n) at the best. Thus adding n functions to a set is actually O(n^2)!
From carefully reading the question, it seems that the OP is asking for the PowerSet of his list of 15 numbers, not all the combinations. I think this may be why the answers are all over the place.
@Scott Biggs: are you sure you're taking about Python here? Set insertions and lookups are O(1) average case. They're like dictionaries. They use hashing. Python doesn't have a special set library (it's in the standard library). We're inserting numbers here not functions. (It would still be inefficient to use O(2^n) memory; the proper solution for people who want combinations rather than the powerset is a simple recursive implementation, or product, etc.)

S
Steven C. Howell

This answer missed one aspect: the OP asked for ALL combinations... not just combinations of length "r".

So you'd either have to loop through all lengths "L":

import itertools

stuff = [1, 2, 3]
for L in range(0, len(stuff)+1):
    for subset in itertools.combinations(stuff, L):
        print(subset)

Or -- if you want to get snazzy (or bend the brain of whoever reads your code after you) -- you can generate the chain of "combinations()" generators, and iterate through that:

from itertools import chain, combinations
def all_subsets(ss):
    return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))

for subset in all_subsets(stuff):
    print(subset)

Thanks for the support! In the weeks since I've posted the above reply, I've found that the NAME of the concept for what Ben is looking for is the "powerset" of the original set of 15 items. In fact, an example implementation is given on the standard python "itertools" doc page: docs.python.org/library/itertools.html (grep for "powerset").
For anyone reading this far: The powerset() generator function in the recipes section of the itertools documentation is simpler, potentially uses less memory, and is likely faster than the implementation shown here.
Is it possible to generate all the combinations in lexicographical order ?
@guik: I'm 99% sure that itertools.combinations preserves the item order in the lists it yields. Thus, if the input is lexically sorted, then each of the outputs will be, as well.
@ENIAC-6 : that is just how Python prints tuples with one element. (The comma isn't "there" 'til you try to print it.) So you have options: 1: convert the item to a list first: print(list(item)) or 2: use ",".join(items) to avoid the one-element commas.
J
James Brady

Have a look at itertools.combinations:

itertools.combinations(iterable, r) Return r length subsequences of elements from the input iterable. Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination tuples will be produced in sorted order.

Since 2.6, batteries are included!


you can just list it all. list(itertools.combinations(iterable, r))
is there anything that does not require r, i.e. combinations of any length subsequences of elements.
this is very good and pointed me to what really solved my problem, which was itertools.combination_with_replacement.
the function writes intertools.combinations_with_replacement
G
Greg

Here's a lazy one-liner, also using itertools:

from itertools import compress, product

def combinations(items):
    return ( set(compress(items,mask)) for mask in product(*[[0,1]]*len(items)) )
    # alternative:                      ...in product([0,1], repeat=len(items)) )

Main idea behind this answer: there are 2^N combinations -- same as the number of binary strings of length N. For each binary string, you pick all elements corresponding to a "1".

items=abc * mask=###
 |
 V
000 -> 
001 ->   c
010 ->  b
011 ->  bc
100 -> a
101 -> a c
110 -> ab
111 -> abc

Things to consider:

This requires that you can call len(...) on items (workaround: if items is something like an iterable like a generator, turn it into a list first with items=list(_itemsArg))

This requires that the order of iteration on items is not random (workaround: don't be insane)

This requires that the items are unique, or else {2,2,1} and {2,1,1} will both collapse to {2,1} (workaround: use collections.Counter as a drop-in replacement for set; it's basically a multiset... though you may need to later use tuple(sorted(Counter(...).elements())) if you need it to be hashable)

Demo

>>> list(combinations(range(4)))
[set(), {3}, {2}, {2, 3}, {1}, {1, 3}, {1, 2}, {1, 2, 3}, {0}, {0, 3}, {0, 2}, {0, 2, 3}, {0, 1}, {0, 1, 3}, {0, 1, 2}, {0, 1, 2, 3}]

>>> list(combinations('abcd'))
[set(), {'d'}, {'c'}, {'c', 'd'}, {'b'}, {'b', 'd'}, {'c', 'b'}, {'c', 'b', 'd'}, {'a'}, {'a', 'd'}, {'a', 'c'}, {'a', 'c', 'd'}, {'a', 'b'}, {'a', 'b', 'd'}, {'a', 'c', 'b'}, {'a', 'c', 'b', 'd'}]

m
martineau

In comments under the highly upvoted answer by @Dan H, mention is made of the powerset() recipe in the itertools documentation—including one by Dan himself. However, so far no one has posted it as an answer. Since it's probably one of the better if not the best approach to the problem—and given a little encouragement from another commenter, it's shown below. The function produces all unique combinations of the list elements of every length possible (including those containing zero and all the elements).

Note: If the, subtly different, goal is to obtain only combinations of unique elements, change the line s = list(iterable) to s = list(set(iterable)) to eliminate any duplicate elements. Regardless, the fact that the iterable is ultimately turned into a list means it will work with generators (unlike several of the other answers).

from itertools import chain, combinations

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)  # allows duplicate elements
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

stuff = [1, 2, 3]
for i, combo in enumerate(powerset(stuff), 1):
    print('combo #{}: {}'.format(i, combo))

Output:

combo #1: ()
combo #2: (1,)
combo #3: (2,)
combo #4: (3,)
combo #5: (1, 2)
combo #6: (1, 3)
combo #7: (2, 3)
combo #8: (1, 2, 3)

What is the list() conversion for in the first place?
@Alexander: To allow the iterable's length to be determined.
J
Jonathan R

This is an approach that can be easily transfered to all programming languages supporting recursion (no itertools, no yield, no list comprehension):

def combs(a):
    if len(a) == 0:
        return [[]]
    cs = []
    for c in combs(a[1:]):
        cs += [c, c+[a[0]]]
    return cs

>>> combs([1,2,3,4,5])
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], ..., [5, 4, 3, 2, 1]]

Ah! Nice implementation.I recognize HEAD = a[0], TAIL = a[1:] from Prolog. Or car = a[0], cdr = a[1:] from Lisp. I wonder if we could use memoization here...
True. List slicing is O(k) where k is the length of the slice. I guess one could speed this up by doing a lookup in a map which would make it O(1) in all runs but the first. Note though that this implementation should not be referenced for performance. For that better implementations exist. This implementation is only for simplicity and portability to most other languages.
community.schemewiki.org/?sicp-ex-2.32 This is a great answer to exercise 2.32 of the SICP book
M
Mathieu Rodic

This one-liner gives you all the combinations (between 0 and n items if the original list/set contains n distinct elements) and uses the native method itertools.combinations:

Python 2

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([map(list, combinations(input, i)) for i in range(len(input) + 1)], [])

Python 3

from itertools import combinations

input = ['a', 'b', 'c', 'd']

output = sum([list(map(list, combinations(input, i))) for i in range(len(input) + 1)], [])

The output will be:

[[],
 ['a'],
 ['b'],
 ['c'],
 ['d'],
 ['a', 'b'],
 ['a', 'c'],
 ['a', 'd'],
 ['b', 'c'],
 ['b', 'd'],
 ['c', 'd'],
 ['a', 'b', 'c'],
 ['a', 'b', 'd'],
 ['a', 'c', 'd'],
 ['b', 'c', 'd'],
 ['a', 'b', 'c', 'd']]

Try it online:

http://ideone.com/COghfX


This is a permutation
@AdHominem: no, it's not. It's a list of all combinations. Permutations would include, e.g. ['b', 'a'].
d
darxtrix

Here is one using recursion:

>>> import copy
>>> def combinations(target,data):
...     for i in range(len(data)):
...         new_target = copy.copy(target)
...         new_data = copy.copy(data)
...         new_target.append(data[i])
...         new_data = data[i+1:]
...         print new_target
...         combinations(new_target,
...                      new_data)
...                      
... 
>>> target = []
>>> data = ['a','b','c','d']
>>> 
>>> combinations(target,data)
['a']
['a', 'b']
['a', 'b', 'c']
['a', 'b', 'c', 'd']
['a', 'b', 'd']
['a', 'c']
['a', 'c', 'd']
['a', 'd']
['b']
['b', 'c']
['b', 'c', 'd']
['b', 'd']
['c']
['c', 'd']
['d']

Can this be modified to return a list of lists instead of printing?
@JamesVickery yes, you could look at either making a list outside of the function and appending to that, or (better) make the function a generator, have a look at the 'yield' keyword :)
new_data = copy.copy(data) - this row is redundant as far as I see, it doesn't influence on anything
A
Asocia

You can generate all combinations of a list in Python using this simple code:

import itertools

a = [1,2,3,4]
for i in xrange(0,len(a)+1):
   print list(itertools.combinations(a,i))

Result would be:

[()]
[(1,), (2,), (3,), (4,)]
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
[(1, 2, 3, 4)]

Cool. I was trying to build domain names from company names for the purposes of scraping the site and this helped to do this
H
HongboZhu

I agree with Dan H that Ben indeed asked for all combinations. itertools.combinations() does not give all combinations.

Another issue is, if the input iterable is big, it is perhaps better to return a generator instead of everything in a list:

iterable = range(10)
for s in xrange(len(iterable)+1):
  for comb in itertools.combinations(iterable, s):
    yield comb

Nice example. I love generators... and I love Python for having them! This example only has one combinations() object around at a time, and yields one of the combinations at time. (Perhaps you want to add the def block around this -- as a usage example.) Note that my implementation (with chain(), given above) is not too much worse: it's true that is creates all len(iterable) generators at once... but it does NOT create all 2 ** len(iterable) combinations at once, as -- to my understanding -- chain "uses up" the first generator before drawing from subsequent ones.
佚名

I thought I would add this function for those seeking an answer without importing itertools or any other extra libraries.

def powerSet(items):
    """
    Power set generator: get all possible combinations of a list’s elements

    Input:
        items is a list
    Output:
        returns 2**n combination lists one at a time using a generator 

    Reference: edx.org 6.00.2x Lecture 2 - Decision Trees and dynamic programming
    """

    N = len(items)
    # enumerate the 2**N possible combinations
    for i in range(2**N):
        combo = []
        for j in range(N):
            # test bit jth of integer i
            if (i >> j) % 2 == 1:
                combo.append(items[j])
        yield combo

Simple Yield Generator Usage:

for i in powerSet([1,2,3,4]):
    print (i, ", ",  end="")

Output from Usage example above:

[] , [1] , [2] , [1, 2] , [3] , [1, 3] , [2, 3] , [1, 2, 3] , [4] , [1, 4] , [2, 4] , [1, 2, 4] , [3, 4] , [1, 3, 4] , [2, 3, 4] , [1, 2, 3, 4] ,


A
Asocia

3 functions:

all combinations of n elements list all combinations of n elements list where order is not distinct all permutations

import sys

def permutations(a):
    return combinations(a, len(a))

def combinations(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinations(a[:i] + a[i+1:], n-1):
                yield [a[i]] + x

def combinationsNoOrder(a, n):
    if n == 1:
        for x in a:
            yield [x]
    else:
        for i in range(len(a)):
            for x in combinationsNoOrder(a[:i], n-1):
                yield [a[i]] + x
    
if __name__ == "__main__":
    for s in combinations(list(map(int, sys.argv[2:])), int(sys.argv[1])):
        print(s)

I like this very much!!! Thank you!!! Python's combinatorics functions are a little bit strange though. In mathematics "combinations" function would be Variations, and "combinationsNoOrder" are actually combinations. I would guess that confuses people that come to python from the branch of mathematics, as it did to me this time. Anyway's, a nice solution, thanks a lot a gain!
n
ninjagecko

Here is yet another solution (one-liner), involving using the itertools.combinations function, but here we use a double list comprehension (as opposed to a for loop or sum):

def combs(x):
    return [c for i in range(len(x)+1) for c in combinations(x,i)]

Demo:

>>> combs([1,2,3,4])
[(), 
 (1,), (2,), (3,), (4,), 
 (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), 
 (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), 
 (1, 2, 3, 4)]

A
Andrew Li
from itertools import permutations, combinations


features = ['A', 'B', 'C']
tmp = []
for i in range(len(features)):
    oc = combinations(features, i + 1)
    for c in oc:
        tmp.append(list(c))

output

[
 ['A'],
 ['B'],
 ['C'],
 ['A', 'B'],
 ['A', 'C'],
 ['B', 'C'],
 ['A', 'B', 'C']
]

The permutations import is unused.
J
Jarno

You can also use the powerset function from the excellent more_itertools package.

from more_itertools import powerset

l = [1,2,3]
list(powerset(l))

# [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

We can also verify, that it meets OP's requirement

from more_itertools import ilen

assert ilen(powerset(range(15))) == 32_768

C
Community

Below is a "standard recursive answer", similar to the other similar answer https://stackoverflow.com/a/23743696/711085 . (We don't realistically have to worry about running out of stack space since there's no way we could process all N! permutations.)

It visits every element in turn, and either takes it or leaves it (we can directly see the 2^N cardinality from this algorithm).

def combs(xs, i=0):
    if i==len(xs):
        yield ()
        return
    for c in combs(xs,i+1):
        yield c
        yield c+(xs[i],)

Demo:

>>> list( combs(range(5)) )
[(), (0,), (1,), (1, 0), (2,), (2, 0), (2, 1), (2, 1, 0), (3,), (3, 0), (3, 1), (3, 1, 0), (3, 2), (3, 2, 0), (3, 2, 1), (3, 2, 1, 0), (4,), (4, 0), (4, 1), (4, 1, 0), (4, 2), (4, 2, 0), (4, 2, 1), (4, 2, 1, 0), (4, 3), (4, 3, 0), (4, 3, 1), (4, 3, 1, 0), (4, 3, 2), (4, 3, 2, 0), (4, 3, 2, 1), (4, 3, 2, 1, 0)]

>>> list(sorted( combs(range(5)), key=len))
[(), 
 (0,), (1,), (2,), (3,), (4,), 
 (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2), (4, 3), 
 (2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1), (4, 1, 0), (4, 2, 0), (4, 2, 1), (4, 3, 0), (4, 3, 1), (4, 3, 2), 
 (3, 2, 1, 0), (4, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0), (4, 3, 2, 1), 
 (4, 3, 2, 1, 0)]

>>> len(set(combs(range(5))))
32

T
Tiago Martins Peres

I know it's far more practical to use itertools to get the all the combinations, but you can achieve this partly with only list comprehension if you so happen to desire, granted you want to code a lot

For combinations of two pairs:

lambda l: [(a, b) for i, a in enumerate(l) for b in l[i+1:]]

And, for combinations of three pairs, it's as easy as this:

lambda l: [(a, b, c) for i, a in enumerate(l) for ii, b in enumerate(l[i+1:]) for c in l[i+ii+2:]]

The result is identical to using itertools.combinations:

import itertools
combs_3 = lambda l: [
    (a, b, c) for i, a in enumerate(l) 
    for ii, b in enumerate(l[i+1:]) 
    for c in l[i+ii+2:]
]
data = ((1, 2), 5, "a", None)
print("A:", list(itertools.combinations(data, 3)))
print("B:", combs_3(data))
# A: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]
# B: [((1, 2), 5, 'a'), ((1, 2), 5, None), ((1, 2), 'a', None), (5, 'a', None)]

M
Modar

Here are two implementations of itertools.combinations

One that returns a list

def combinations(lst, depth, start=0, items=[]):
    if depth <= 0:
        return [items]
    out = []
    for i in range(start, len(lst)):
        out += combinations(lst, depth - 1, i + 1, items + [lst[i]])
    return out

One returns a generator

def combinations(lst, depth, start=0, prepend=[]):
    if depth <= 0:
        yield prepend
    else:
        for i in range(start, len(lst)):
            for c in combinations(lst, depth - 1, i + 1, prepend + [lst[i]]):
                yield c

Please note that providing a helper function to those is advised because the prepend argument is static and is not changing with every call

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]

# get a hold of prepend
prepend = [c for c in combinations([], -1)][0]
prepend.append(None)

print([c for c in combinations([1, 2, 3, 4], 3)])
# [[None, 1, 2, 3], [None, 1, 2, 4], [None, 1, 3, 4], [None, 2, 3, 4]]

This is a very superficial case but better be safe than sorry


A
Apurva Singh

How about this.. used a string instead of list, but same thing.. string can be treated like a list in Python:

def comb(s, res):
    if not s: return
    res.add(s)
    for i in range(0, len(s)):
        t = s[0:i] + s[i + 1:]
        comb(t, res)

res = set()
comb('game', res) 

print(res)

L
Laurynas Tamulevičius

Without itertools in Python 3 you could do something like this:

def combinations(arr, carry):
    for i in range(len(arr)):
        yield carry + arr[i]
        yield from combinations(arr[i + 1:], carry + arr[i])

where initially carry = "".


A
Asocia

Combination from itertools

import itertools
col_names = ["aa","bb", "cc", "dd"]
all_combinations = itertools.chain(*[itertools.combinations(col_names,i+1) for i,_ in enumerate(col_names)])
print(list(all_combinations))

M
Mattia Maestrini

This code employs a simple algorithm with nested lists...

# FUNCTION getCombos: To generate all combos of an input list, consider the following sets of nested lists...
#
#           [ [ [] ] ]
#           [ [ [] ], [ [A] ] ]
#           [ [ [] ], [ [A],[B] ],         [ [A,B] ] ]
#           [ [ [] ], [ [A],[B],[C] ],     [ [A,B],[A,C],[B,C] ],                   [ [A,B,C] ] ]
#           [ [ [] ], [ [A],[B],[C],[D] ], [ [A,B],[A,C],[B,C],[A,D],[B,D],[C,D] ], [ [A,B,C],[A,B,D],[A,C,D],[B,C,D] ], [ [A,B,C,D] ] ]
#
#  There is a set of lists for each number of items that will occur in a combo (including an empty set).
#  For each additional item, begin at the back of the list by adding an empty list, then taking the set of
#  lists in the previous column (e.g., in the last list, for sets of 3 items you take the existing set of
#  3-item lists and append to it additional lists created by appending the item (4) to the lists in the
#  next smallest item count set. In this case, for the three sets of 2-items in the previous list. Repeat
#  for each set of lists back to the initial list containing just the empty list.
#

def getCombos(listIn = ['A','B','C','D','E','F'] ):
    listCombos = [ [ [] ] ]     # list of lists of combos, seeded with a list containing only the empty list
    listSimple = []             # list to contain the final returned list of items (e.g., characters)

    for item in listIn:
        listCombos.append([])   # append an emtpy list to the end for each new item added
        for index in xrange(len(listCombos)-1, 0, -1):  # set the index range to work through the list
            for listPrev in listCombos[index-1]:        # retrieve the lists from the previous column
                listCur = listPrev[:]                   # create a new temporary list object to update
                listCur.append(item)                    # add the item to the previous list to make it current
                listCombos[index].append(listCur)       # list length and append it to the current list

                itemCombo = ''                          # Create a str to concatenate list items into a str
                for item in listCur:                    # concatenate the members of the lists to create
                    itemCombo += item                   # create a string of items
                listSimple.append(itemCombo)            # add to the final output list

    return [listSimple, listCombos]
# END getCombos()

So what this code appears to do is return [listOfCombinations, listOfCombinationsGroupedBySize]. Unfortunately when run with the demo input it gives 63 elements rather than 64; it seems to be missing the empty set (in this case, the empty string "").
P
Pradeep Vairamani

Without using itertools:

def combine(inp):
    return combine_helper(inp, [], [])


def combine_helper(inp, temp, ans):
    for i in range(len(inp)):
        current = inp[i]
        remaining = inp[i + 1:]
        temp.append(current)
        ans.append(tuple(temp))
        combine_helper(remaining, temp, ans)
        temp.pop()
    return ans


print(combine(['a', 'b', 'c', 'd']))

T
Tiago Martins Peres

This is my implementation

def get_combinations(list_of_things):
"""gets every combination of things in a list returned as a list of lists

Should be read : add all combinations of a certain size to the end of a list for every possible size in the
the list_of_things.

"""
list_of_combinations = [list(combinations_of_a_certain_size)
                        for possible_size_of_combinations in range(1,  len(list_of_things))
                        for combinations_of_a_certain_size in itertools.combinations(list_of_things,
                                                                                     possible_size_of_combinations)]
return list_of_combinations

What is your implementation solving better than the previous implementations posted here.
T
Tiago Martins Peres

As stated in the documentation

def combinations(iterable, r):
    # combinations('ABCD', 2) --> AB AC AD BC BD CD
    # combinations(range(4), 3) --> 012 013 023 123
    pool = tuple(iterable)
    n = len(pool)
    if r > n:
        return
    indices = list(range(r))
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + n - r:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        yield tuple(pool[i] for i in indices)


x = [2, 3, 4, 5, 1, 6, 4, 7, 8, 3, 9]
for i in combinations(x, 2):
    print i

If I'm right, this is the exact code copied from python documentation [docs.python.org/3.6/library/itertools.html ]. If so, please do ref the source.
@GabrielChu just fixed it. The format wasn't also correct.
z
zmk

Using list comprehension:

def selfCombine( list2Combine, length ):
    listCombined = str( ['list2Combine[i' + str( i ) + ']' for i in range( length )] ).replace( "'", '' ) \
                     + 'for i0 in range(len( list2Combine ) )'
    if length > 1:
        listCombined += str( [' for i' + str( i ) + ' in range( i' + str( i - 1 ) + ', len( list2Combine ) )' for i in range( 1, length )] )\
            .replace( "', '", ' ' )\
            .replace( "['", '' )\
            .replace( "']", '' )

    listCombined = '[' + listCombined + ']'
    listCombined = eval( listCombined )

    return listCombined

list2Combine = ['A', 'B', 'C']
listCombined = selfCombine( list2Combine, 2 )

Output would be:

['A', 'A']
['A', 'B']
['A', 'C']
['B', 'B']
['B', 'C']
['C', 'C']

This proposal is to do string mangling to build up sets?!?! Holy crow.... And: it is not returning the powerset, but rather, something like combinations_with_replacement(). (See docs.python.org/library/…)
This indeed does the same as combination_with_replacement(), but at least on my box this runs slightly faster than itertools. What can I say, I like list comprehensions.
Thank you for the answer! What about create listCombined with reversed lists such as ['A', 'A'], ['A', 'B'], ['A', 'C'], ['B', 'A'], ['B', 'B'], ['B', 'C'], ['C', 'A'], ['C', 'B'] and ['C', 'C'] that include everything?
Very interesting, but my python isn't quite up to understanding the subtleties here. Is there something special about using listCombined in different scopes and the fact that the for loop is all in one line? I'm trying to port this to Java with little luck.
E
Expat C

If someone is looking for a reversed list, like I was:

stuff = [1, 2, 3, 4]

def reverse(bla, y):
    for subset in itertools.combinations(bla, len(bla)-y):
        print list(subset)
    if y != len(bla):
        y += 1
        reverse(bla, y)

reverse(stuff, 1)

P
Priyansh gupta
flag = 0
requiredCals =12
from itertools import chain, combinations

def powerset(iterable):
    s = list(iterable)  # allows duplicate elements
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

stuff = [2,9,5,1,6]
for i, combo in enumerate(powerset(stuff), 1):
    if(len(combo)>0):
        #print(combo , sum(combo))
        if(sum(combo)== requiredCals):
            flag = 1
            break
if(flag==1):
    print('True')
else:
    print('else')


y
yip_yip

I'm late to the party but would like to share the solution I found to the same issue: Specifically, I was looking to do sequential combinations, so for "STAR" I wanted "STAR", "TA", "AR", but not "SR".

lst = [S, T, A, R]
lstCombos = []
for Length in range(0,len(lst)+1):
    for i in lst:
        lstCombos.append(lst[lst.index(i):lst.index(i)+Length])

Duplicates can be filtered with adding in an additional if before the last line:

lst = [S, T, A, R]
lstCombos = []
for Length in range(0,len(lst)+1):
    for i in lst:
         if not lst[lst.index(i):lst.index(i)+Length]) in lstCombos:
             lstCombos.append(lst[lst.index(i):lst.index(i)+Length])

If for some reason this returns blank lists in the output, which happened to me, I added:

for subList in lstCombos:
    if subList = '':
         lstCombos.remove(subList)

P
Piai

I'm a bit late on this topic, but think I can help someone.

You can use product from itertools:

from itertools import product

n = [1, 2, 3]

result = product(n, repeat=3) # You can change the repeat more then n length

print(list(result))

Output:

[(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1),
 (1, 3, 2), (1, 3, 3), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 2, 2),
 (2, 2, 3), (2, 3, 1), (2, 3, 2), (2, 3, 3), (3, 1, 1), (3, 1, 2), (3, 1, 3), 
(3, 2, 1), (3, 2, 2), (3, 2, 3), (3, 3, 1), (3, 3, 2), (3, 3, 3)]

Another example, but changing repeat arguement:

from itertools import product

n = [1, 2, 3]

result = product(n, repeat=4) # Changing repeat to 4
print(list(result))

Output:

(1, 1, 2, 3), (1, 1, 3, 1), (1, 1, 3, 2), (1, 1, 3, 3), (1, 2, 1, 1), 
(1, 2, 1, 2), (1, 2, 1, 3), (1, 2, 2, 1), (1, 2, 2, 2), (1, 2, 2, 3), 
(1, 2, 3, 1), (1, 2, 3, 2), (1, 2, 3, 3), (1, 3, 1, 1), (1, 3, 1, 2), 
(1, 3, 1, 3), (1, 3, 2, 1), (1, 3, 2, 2), (1, 3, 2, 3), (1, 3, 3, 1), 
(1, 3, 3, 2), (1, 3, 3, 3), (2, 1, 1, 1), (2, 1, 1, 2), (2, 1, 1, 3), 
(2, 1, 2, 1), (2, 1, 2, 2), (2, 1, 2, 3), (2, 1, 3, 1), (2, 1, 3, 2),
 (2, 1, 3, 3), (2, 2, 1, 1), (2, 2, 1, 2), (2, 2, 1, 3), (2, 2, 2, 1), 
(2, 2, 2, 2), (2, 2, 2, 3), (2, 2, 3, 1), (2, 2, 3, 2), (2, 2, 3, 3), 
(2, 3, 1, 1), (2, 3, 1, 2), (2, 3, 1, 3), (2, 3, 2, 1), (2, 3, 2, 2), 
(2, 3, 2, 3), (2, 3, 3, 1), (2, 3, 3, 2), (2, 3, 3, 3), (3, 1, 1, 1), 
(3, 1, 1, 2), (3, 1, 1, 3), (3, 1, 2, 1), (3, 1, 2, 2), (3, 1, 2, 3), 
(3, 1, 3, 1), (3, 1, 3, 2), (3, 1, 3, 3), (3, 2, 1, 1), (3, 2, 1, 2), 
(3, 2, 1, 3), (3, 2, 2, 1), (3, 2, 2, 2), (3, 2, 2, 3), (3, 2, 3, 1), 
(3, 2, 3, 2), (3, 2, 3, 3), (3, 3, 1, 1), (3, 3, 1, 2), (3, 3, 1, 3), 
(3, 3, 2, 1), (3, 3, 2, 2), (3, 3, 2, 3), (3, 3, 3, 1), (3, 3, 3, 2), 
(3, 3, 3, 3)]```

b
bhargav3vedi

If you do not want to use combinations library, here is the solution:

nums = [1,2,3]
p = [[]]
fnl = [[],nums]

for i in range(len(nums)):
    for j in range(i+1,len(nums)):
        p[-1].append([i,j])

for i in range(len(nums)-3):
    p.append([])
    for m in p[-2]:
        p[-1].append(m+[m[-1]+1])

for i in p:
    for j in i:
        n = []
        for m in j:
            if m < len(nums):
                n.append(nums[m])
        if n not in fnl:
            fnl.append(n)

for i in nums:
    if [i] not in fnl:
        fnl.append([i])

print(fnl)

Output:

[[], [1, 2, 3], [1, 2], [1, 3], [2, 3], [1], [2], [3]]